On hyper-arithmetic reflection principles

Joost J. Joosten

Universitat de Barcelona

Wednesday 30-09-2014
Second International Wormshop, Mexico City
In Memoriam: Grisha Mints
Let T be some r.e. sound theory
Let T be some r.e. sound theory

By Gödel 2 we know that $\text{Con}(T)$ is independent of T
Let T be some r.e. sound theory

By Gödel 2 we know that $\text{Con}(T)$ is independent of T

So, we can add it and obtain a new sound theory
Let T be some r.e. sound theory

By Gödel 2 we know that Con(T) is independent of T

So, we can add it and obtain a new sound theory

We define the Turing(-Feferman) progression along a recursive Γ of T as follows:
Let T be some r.e. sound theory

By Gödel 2 we know that $\text{Con}(T)$ is independent of T

So, we can add it and obtain a new sound theory

We define the Turing(-Feferman) progression along a recursive Γ of T as follows:
Let T be some r.e. sound theory

By Gödel 2 we know that $\text{Con}(T)$ is independent of T

So, we can add it and obtain an new sound theory

We define the Turing(-Feferman) progression along a recursive Γ of T as follows:

\[T_0 := T; \]
Let T be some r.e. sound theory.

By Gödel 2 we know that $\text{Con}(T)$ is independent of T.

So, we can add it and obtain an new sound theory.

We define the Turing(-Feferman) progression along a recursive Γ of T as follows:

$$
\begin{align*}
T_0 & := T; \\
T_{\alpha+1} & := T_{\alpha} + \text{Con}(T_{\alpha});
\end{align*}
$$
Let T be some r.e. sound theory.

By Gödel 2 we know that $\text{Con}(T)$ is independent of T.

So, we can add it and obtain an new sound theory.

We define the Turing(-Feferman) progression along a recursive Γ of T as follows:

- $T_0 := T$;
- $T_{\alpha + 1} := T_\alpha + \text{Con}(T_\alpha)$;
- $T_\lambda := \bigcup_{\alpha < \lambda} T_\alpha$ for limit $\lambda < \Gamma$.
The obvious way of proving things about Turing progressions is by transfinite induction.
The obvious way of proving things about Turing progressions is by transfinite induction.

How can weak theories still prove interesting statements about Turing progressions?
The obvious way of proving things about Turing progressions is by transfinite induction.

How can weak theories still prove interesting statements about Turing progressions?

Schmerl (1978): reflexive transfinite induction
Transfinite induction: $\forall \alpha (\forall \beta < \alpha \phi(\beta) \rightarrow \phi(\alpha)) \rightarrow \forall \alpha \phi(\alpha)$;
Transfinite induction: $\forall \alpha \ (\forall \beta < \alpha \ \phi(\beta) \rightarrow \phi(\alpha)) \rightarrow \forall \alpha \ \phi(\alpha)$;

Theorem EA proves reflexive transfinite induction (Schmerl)

If $EA \vdash \forall \alpha \left(\Box_{EA} \ \forall \beta < \dot{\alpha} \ \phi(\beta) \rightarrow \phi(\alpha) \right)$, then

$EA \vdash \forall \alpha \ \phi(\alpha)$.
Transfinite induction: $\forall \alpha \left(\forall \beta < \alpha \, \phi(\beta) \rightarrow \phi(\alpha) \right) \rightarrow \forall \alpha \, \phi(\alpha)$;

Theorem EA proves reflexive transfinite induction (Schmerl)

If $EA \vdash \forall \alpha \left(\square_{EA} \forall \beta < \dot{\alpha} \, \phi(\beta) \rightarrow \phi(\alpha) \right)$, then

$$EA \vdash \forall \alpha \, \phi(\alpha).$$

Proof By Löb’s rule
Transfinite induction: $\forall \alpha \left(\forall \beta < \alpha \phi(\beta) \rightarrow \phi(\alpha) \right) \rightarrow \forall \alpha \phi(\alpha)$;

Theorem EA proves reflexive transfinite induction (Schmerl)

If $EA \vdash \forall \alpha \left(\square_{EA} \forall \beta < \dot{\alpha} \phi(\beta) \rightarrow \phi(\alpha) \right)$, then

$$EA \vdash \forall \alpha \phi(\alpha).$$

Proof By Löb’s rule

Clearly, if

$$T \vdash \forall \alpha \left(\square_{T} \forall \beta < \dot{\alpha} \phi(\beta) \rightarrow \phi(\alpha) \right),$$
Transfinite induction: $$\forall \alpha \left(\forall \beta < \alpha \phi(\beta) \rightarrow \phi(\alpha) \right) \rightarrow \forall \alpha \phi(\alpha);$$

Theorem EA proves reflexive transfinite induction (Schmerl)

If $EA \vdash \forall \alpha \left(\Box_{EA} \forall \beta < \dot{\alpha} \phi(\beta) \rightarrow \phi(\alpha) \right)$, then

$$EA \vdash \forall \alpha \phi(\alpha).$$

Proof By Löb’s rule

Clearly, if

$$T \vdash \forall \alpha \left(\Box_T \forall \beta < \dot{\alpha} \phi(\beta) \rightarrow \phi(\alpha) \right),$$

then also
Transfinite induction: $\forall \alpha \ (\forall \beta < \alpha \ \phi(\beta) \rightarrow \phi(\alpha)) \rightarrow \forall \alpha \ \phi(\alpha)$;

Theorem EA proves reflexive transfinite induction (Schmerl)

If $\text{EA} \vdash \forall \alpha \left(\Box_{\text{EA}} \forall \beta < \alpha \ \phi(\beta) \rightarrow \phi(\alpha) \right)$, then

$$\text{EA} \vdash \forall \alpha \ \phi(\alpha).$$

Proof By Löb’s rule

Clearly, if

$$T \vdash \forall \alpha \left(\Box_T \forall \beta < \alpha \ \phi(\beta) \rightarrow \phi(\alpha) \right),$$

then also

$$T \vdash \Box_T \forall \alpha \ \phi(\alpha) \rightarrow \forall \alpha \ \phi(\alpha),$$
We can generalize Turing progressions to stronger notions of consistency.
We can generalize Turing progressions to stronger notions of consistency.

For $n \in \omega$:
We can generalize Turing progressions to stronger notions of consistency.

For $n \in \omega$:

We will denote “provable in T using all true Π_n sentences” by $[n]_T$.
We can generalize Turing progressions to stronger notions of consistency.

For $n \in \omega$:

We will denote “provable in T using all true Π_n sentences” by $[n]_T$ (of logical complexity Σ_{n+1}).
We can generalize Turing progressions to stronger notions of consistency.

For $n \in \omega$:

We will denote “provable in T using all true Π_n sentences” by $[n]_T$ (of logical complexity Σ_{n+1}^0)
We can generalize Turing progressions to stronger notions of consistency.

For $n \in \omega$:

We will denote “provable in T using all true Π_n sentences” by $[n]_T$ (of logical complexity Σ^0_{n+1})

The dual notion “consistent with T and all true Π_n sentences” is denoted $\langle n \rangle_T$.
We can generalize Turing progressions to stronger notions of consistency.

For \(n \in \omega \):

- We will denote “provable in \(T \) using all true \(\Pi_n \) sentences” by \([n]_T\) (of logical complexity \(\Sigma^0_{n+1} \))
- The dual notion “consistent with \(T \) and all true \(\Pi_n \) sentences” is denoted \(\langle n \rangle_T \).
We can generalize Turing progressions to stronger notions of consistency.

For $n \in \omega$:

- We will denote “provable in T using all true Π_n sentences” by $[n]_T$ (of logical complexity Σ_{n+1}^0)
- The dual notion “consistent with T and all true Π_n sentences” is denoted $\langle n \rangle_T$. (Π_{n+1}^0)
We can generalize Turing progressions to stronger notions of consistency.

For $n \in \omega$:

We will denote “provable in T using all true Π_n sentences” by $[n]_T$ (of logical complexity Σ^0_{n+1})

The dual notion “consistent with T and all true Π_n sentences” is denoted $\langle n \rangle_T$. (Π^0_{n+1})

Then
We can generalize Turing progressions to stronger notions of consistency.

For \(n \in \omega \):

We will denote “provable in \(T \) using all true \(\Pi_n \) sentences” by \([n]_T\) (of logical complexity \(\Sigma^0_{n+1} \))

The dual notion “consistent with \(T \) and all true \(\Pi_n \) sentences” is denoted \(\langle n \rangle_T \). (\(\Pi^0_{n+1} \))

Then

\[T^i_0 := T; \]
We can generalize Turing progressions to stronger notions of consistency.

For \(n \in \omega \):

- We will denote “provable in \(T \) using all true \(\Pi_n \) sentences” by \([n]_T\) (of logical complexity \(\Sigma_{n+1}^0 \))

- The dual notion “consistent with \(T \) and all true \(\Pi_n \) sentences” is denoted \(\langle n \rangle_T \). (\(\Pi_{n+1}^0 \))

Then

\[
\begin{align*}
T^i_0 &:= T; \\
T^i_{\alpha+1} &:= T^i_\alpha \cup \{ \langle i \rangle_{T^i_\alpha} \top \};
\end{align*}
\]
We can generalize Turing progressions to stronger notions of consistency.

For $n \in \omega$:

We will denote “provable in T using all true Π_n sentences” by $[n]_T$ (of logical complexity Σ^{0}_{n+1})

The dual notion “consistent with T and all true Π_n sentences” is denoted $\langle n \rangle_T$. (Π^{0}_{n+1})

Then

$T_0^i := T$;

$T_{\alpha+1}^i := T_{\alpha}^i \cup \{ \langle i \rangle_{T_{\alpha}^i}, \top \}$;

$T_\lambda := \bigcup_{\alpha < \lambda} T_\alpha$ for limit λ.

Joost J. Joosten On hyper-arithmetic reflection principles
Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions
Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions.

Already just the language with one modality $[0]$ is expressive.
Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions.

Already just the language with one modality $[0]$ is expressive.

Gödel II: $\Diamond T \top \rightarrow \neg \Box T \Diamond T \top$
Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions

Already just the language with one modality \([0]\) is expressive

Gödel II: \(\Diamond_T \top \rightarrow \neg \Box_T \Diamond_T \top\)

Gödel II: \(\Box_T(\Box_T \bot \rightarrow \bot) \rightarrow \Box_T \bot\)
Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions.

Already just the language with one modality \([0]\) is expressive.

Gödel II: \(\Diamond_T \top \rightarrow \neg \Box_T \Diamond_T \top\)

Gödel II: \(\Box_T (\Box_T \bot \rightarrow \bot) \rightarrow \Box_T \bot\)

For \(n \in \mathbb{N}\) we see \(T_n \equiv T + \Diamond^n_T \top\)
Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions

Already just the language with one modality \([0]\) is expressive

Gödel II: \(\Diamond_T \top \rightarrow \neg \square_T \Diamond_T \top\)

Gödel II: \(\square_T(\square_T \bot \rightarrow \bot) \rightarrow \square_T \bot\)

For \(n \in \mathbb{N}\) we see \(T_n \equiv T + \Diamond^n_T \top\)

Transfinite progressions are not expressible in the modal language with just one modal operator.
Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions

Already just the language with one modality \([0]\) is expressive

Gödel II: \(\Diamond_T \top \rightarrow \neg \Box_T \Diamond_T \top\)

Gödel II: \(\Box_T (\Box_T \bot \rightarrow \bot) \rightarrow \Box_T \bot\)

For \(n \in \mathbb{N}\) we see \(T_n \equiv T + \Diamond^n_T \top\)

Transfinite progressions are not expressible in the modal language with just one modal operator.

However:
Poly-modal provability logics turn out to be suitably well equipped to talk about Turing progressions

Already just the language with one modality \([0]\) is expressive

Gödel II: \(\lozenge_T \top \rightarrow \neg \Box_T \lozenge_T \top\)

Gödel II: \(\Box_T (\Box_T \bot \rightarrow \bot) \rightarrow \Box_T \bot\)

For \(n \in \mathbb{N}\) we see \(T_n \equiv T + \lozenge^n_T \top\)

Transfinite progressions are not expressible in the modal language with just one modal operator.

However:

Proposition: \(T + \langle 1 \rangle_T \top\) is a \(\Pi_1\) conservative extension of \(T + \{\langle 0 \rangle^k_T \top \mid k \in \omega\}\).
Definition

The logic GLP_\Lambda is the propositional normal modal logic that has for each \(\xi < \Lambda \) a modality \([\xi]\) and is axiomatized by the following schemata:

\[
\begin{align*}
[\xi](A \rightarrow B) & \rightarrow ([\xi]A \rightarrow [\xi]B) \\
[\xi]([\xi]A \rightarrow A) & \rightarrow [\xi]A \\
[\xi]A & \rightarrow [\xi']A \\
A & \rightarrow [\xi]A
\end{align*}
\]
Definition

The logic GLP_Λ is the propositional normal modal logic that has for each $\xi < \Lambda$ a modality $[\xi]$ and is axiomatized by the following schemata:

\[
\begin{align*}
[\xi](A \to B) & \to ([\xi]A \to [\xi]B) \\
[\xi]([\xi]A \to A) & \to [\xi]A \\
\langle \xi \rangle A & \to [\xi]\langle \xi \rangle A & \text{for } \xi < \zeta, \\
[\xi]A & \to [\zeta]A & \text{for } \xi < \zeta.
\end{align*}
\]
Definition

The logic GLP_{Λ} is the propositional normal modal logic that has for each $\xi < \Lambda$ a modality $[\xi]$ and is axiomatized by the following schemata:

\[
\begin{align*}
[\xi](A \to B) &\to ([\xi]A \to [\xi]B) \\
[\xi]([\xi]A \to A) &\to [\xi]A \\
\langle \xi \rangle A &\to [\xi]\langle \xi \rangle A & \text{for } \xi < \zeta, \\
[\xi]A &\to [\zeta]A & \text{for } \xi < \zeta.
\end{align*}
\]

The rules of inference are Modus Ponens and necessitation for each modality: $\frac{\psi}{[\zeta]\psi}$.
GLP$^0_\Lambda$ denotes the closed fragment (no propositional variables)
- GLP_Λ^0 denotes the closed fragment (no propositional variables)
- Iterated consistency statements in GLP_Λ^0 are called *worms*
- GLP_0^Λ denotes the closed fragment (no propositional variables)
- Iterated consistency statements in GLP_0^Λ are called *worms*
- $\langle \xi_0 \rangle \ldots \langle \xi_n \rangle^\top$
GLP$^0_\Lambda$ denotes the closed fragment (no propositional variables)

Iterated consistency statements in GLP$^0_\Lambda$ are called *worms*

$\langle \xi_0 \rangle \cdots \langle \xi_n \rangle \top$

We write \mathbb{W} for the class of all worms
• GLP^0_Λ denotes the closed fragment (no propositional variables)
• Iterated consistency statements in GLP^0_Λ are called *worms*
• $\langle \xi_0 \rangle \ldots \langle \xi_n \rangle \top$
• We write \mathcal{W} for the class of all worms
• We write \mathcal{W}_ξ for the class of all worms all of whose modalities are at least ξ
GLP\(^0\)\(\Lambda\) denotes the closed fragment (no propositional variables)

Iterated consistency statements in GLP\(^0\)\(\Lambda\) are called *worms*

\(\langle \xi_0 \rangle \ldots \langle \xi_n \rangle \top\)

We write \(\mathbb{W}\) for the class of all worms

We write \(\mathbb{W}_\xi\) for the class of all worms all of whose modalities are at least \(\xi\)

We can define natural orderings \(<_\xi\) on \(\mathbb{W}\) by

\[A <_\xi B \iff \text{GLP} \vdash B \rightarrow \langle \xi \rangle A \]
\[A \prec_\xi B :\iff \text{GLP} \vdash B \rightarrow \langle \xi \rangle A \]

- For \(\prec_0 \) defines a well-order on the class of worms modulo provable GLP equivalence.
\[A \prec_\xi B :\iff \text{GLP} \vdash B \rightarrow \langle \xi \rangle A \]

- For \(\prec_0 \) defines a well-order on the class of worms modulo provable GLP equivalence. (Beklemishev, Fernández Duque, JjJ)
\[A \prec_\xi B \iff \text{GLP} \vdash B \rightarrow \langle \xi \rangle A \]

- For \(\prec_0 \) defines a well-order on the class of worms modulo provable GLP equivalence.
 \(\text{(Beklemishev, Fernández Duque, JjJ)} \)

- For \(\prec_\xi \) with \(\xi > 0 \) the relation is no longer linear (mod prov. equivalence) but is still well-founded

By \(o^*(A) \) we denote the order type of \(A \) under \(\prec_0 \) and we write \(o(A) \) instead of \(o^*(A) \).
A < _\xi B \iff \text{GLP} \vdash B \rightarrow \langle \xi \rangle A

- For \langle 0 \rangle defines a well-order on the class of worms modulo provable GLP equivalence. (Beklemishev, Fernández Duque, JjJ)
- For \langle \xi \rangle with \xi > 0 the relation is no longer linear (mod prov. equivalence) but is still well-founded (infinite anti-chains)
A \lessdot_{\xi} B : \iff \text{GLP} \vdash B \rightarrow \langle \xi \rangle A

- For \langle 0 \rangle defines a well-order on the class of worms modulo provable GLP equivalence.
 (Beklemishev, Fernández Duque, JjJ)
- For \langle \xi \rangle with \xi > 0 the relation is no longer linear (mod prov. equivalence) but is still well-founded (infinite anti-chains)
- **Definition** By \(o_\alpha(A) \) we denote the order type of A under \(<_\alpha \)
\[A \prec_\xi B \iff \text{GLP} \vdash B \rightarrow \langle \xi \rangle A \]

- For \(\prec_0 \) defines a well-order on the class of worms modulo provable GLP equivalence. (Beklemishev, Fernández Duque, JjJ)

- For \(\prec_\xi \) with \(\xi > 0 \) the relation is no longer linear (mod prov. equivalence) but is still well-founded (infinite anti-chains)

- **Definition** By \(o_\alpha(A) \) we denote the order type of \(A \) under \(\prec_\alpha \) and we write \(o(A) \) instead of \(o_0(A) \).
For \(\prec_0 \) defines a well-order on the class of worms modulo provable GLP equivalence. (Beklemishev, Fernández Duque, JjJ)

For \(\prec_\xi \) with \(\xi > 0 \) the relation is no longer linear (mod prov. equivalence) but is still well-founded (infinite anti-chains).

Definition By \(o_\alpha(A) \) we denote the order type of \(A \) under \(\prec_\alpha \) and we write \(o(A) \) instead of \(o_0(A) \).

Worms of GLP_\omega are known to be useful for Turing progressions:
\[A \prec_\xi B \quad :\Leftrightarrow \quad \text{GLP} \vdash B \rightarrow \langle \xi \rangle A \]

- For \(\prec_0 \) defines a well-order on the class of worms modulo provable GLP equivalence. (Beklemishev, Fernández Duque, JjJ)
- For \(\prec_\xi \) with \(\xi > 0 \) the relation is no longer linear (mod prov. equivalence) but is still well-founded (infinite anti-chains)
- **Definition** By \(o_\alpha(A) \) we denote the order type of \(A \) under \(\prec_\alpha \) and we write \(o(A) \) instead of \(o_0(A) \).
- Worms of \(\text{GLP}_\omega \) are known to be useful for Turing progressions:
- **Proposition** (Beklemishev) For each ordinal \(\alpha < \varepsilon_0 \) there is some \(\text{GLP}_\omega \)-worm \(A \) such that \(o(A) = \alpha \), and \(T + A \) is \(\Pi_1 \) equivalent to \(T_\alpha \).
For the first part of this talk we shall focus on \(\text{GLP}_\omega \)
For the first part of this talk we shall focus on GLP_ω

For a worm A we define $h_n(A)$ as the n head as the largest part on the left of A where all modalities are at least n
For the first part of this talk we shall focus on GLP$_\omega$

For a worm A we define $h_n(A)$ as the n head as the largest part on the left of A where all modalities are at least n

Example: $h_2(34245) = 34245$ and $h_3(34) = 34$
For the first part of this talk we shall focus on GLP_{ω}

- For a worm A we define $h_n(A)$ as the n head as the largest part on the left of A where all modalities are at least n
- Example: $h_2(34245) = 34245$ and $h_3(34) = 34$
- We define an **Ignatiev sequence** to be a sequence $\vec{A} = \{A_i\}$ of worms so that
For the first part of this talk we shall focus on GLP_ω

For a worm A we define $h_n(A)$ as the n head as the largest part on the left of A where all modalities are at least n

Example: $h_2(34245) = 34245$ and $h_3(34) = 34$

We define an Ignatiev sequence to be a sequence $\vec{A} = \{A_i\}$ of worms so that

- Each $A_n \in \mathcal{B}_n$
For the first part of this talk we shall focus on GLP_ω

For a worm A we define \(h_n(A) \) as the \(n \) head as the largest part on the left of A where all modalities are at least \(n \)

Example: \(h_2(34245) = 34245 \) and \(h_3(34) = 34 \)

We define an **Ignatiev sequence** to be a sequence \(\vec{A} = \{A_i\} \) of worms so that

- Each \(A_n \in B_n \)
- \(A_{n+1} \leq_{n+1} h_{n+1}(A_n) \)
For the first part of this talk we shall focus on \(\text{GLP}_\omega \).

For a worm \(A \) we define \(h_n(A) \) as the \(n \) head as the largest part on the left of \(A \) where all modalities are at least \(n \).

Example: \(h_2(34245) = 34245 \) and \(h_3(34) = 34 \).

We define an \textit{Ignatiev sequence} to be a sequence \(\vec{A} = \{ A_i \} \) of worms so that

- Each \(A_n \in B_n \)
- \(A_{n+1} \leq_{n+1} h_{n+1}(A_n) \)

Example: \(\langle 22022, 22 \rangle \)
For the first part of this talk we shall focus on GLP_ω

For a worm A we define \(h_n(A) \) as the \(n \) head as the largest part on the left of \(A \) where all modalities are at least \(n \)

Example: \(h_2(34245) = 34245 \) and \(h_3(34) = 34 \)

We define an *Ignatiev sequence* to be a sequence \(\vec{A} = \{A_i\} \) of worms so that

- Each \(A_n \in B_n \)
- \(A_{n+1} \leq_{n+1} h_{n+1}(A_n) \)

Example: \(\langle 22022, 22 \rangle \)

but also \(\langle 22022, 2 \rangle \)
For two Ignatiev sequences \vec{A} and \vec{B} we define an accessibility relation $<_n$:
For two Ignatiev sequences \vec{A} and \vec{B} we define an accessibility relation $<_n$:

$\vec{A} <_n \vec{B}$ if and only if $\vec{A}_m = \vec{B}_m$ for all $m < n$.

Example: $\langle 202, 22 \rangle >_1 \langle 202, 2 \rangle$ but also $\langle 202, 22 \rangle >_1 \langle 202, 2, 2 \rangle$.
For two Ignatiev sequences \(\vec{A} \) and \(\vec{B} \) we define an accessibility relation \(<_n \):

\(\vec{A} <_n \vec{B} \) if and only if

\[A_m = B_m \text{ for all } m < n \]
For two Ignatiev sequences \vec{A} and \vec{B} we define an accessibility relation $<_n$:

$\vec{A} <_n \vec{B}$ if and only if

1. $A_m = B_m$ for all $m < n$
2. $A_n <_n B_n$
For two Ignatiev sequences \vec{A} and \vec{B} we define an accessibility relation $<_n$:

- $\vec{A} <_n \vec{B}$ if and only if
 - $A_m = B_m$ for all $m < n$
 - $A_n <_n B_n$

Example: $\langle 202, 22 \rangle >_1 \langle 202, 2 \rangle$
For two Ignatiev sequences \tilde{A} and \tilde{B} we define an accessibility relation $<_n$:

$\tilde{A} <_n \tilde{B}$ if and only if

- $A_m = B_m$ for all $m < n$
- $A_n <_n B_n$

Example: $\langle 202, 22 \rangle >_1 \langle 202, 2 \rangle$

but also $\langle 202, 22 \rangle >_1 \langle 202, 2, 2 \rangle$
Let \mathcal{I} denote the set of all Ignatiev sequences.
Let \mathcal{I} denote the set of all Ignatiev sequences.

We define a Kripke frame:

$$\langle \mathcal{I}, \{>n\}_{n \in \omega} \rangle$$
Let \mathcal{I} denote the set of all Ignatiev sequences.

We define a Kripke frame:

$$\langle \mathcal{I}, \{ > n \}_{n \in \omega} \rangle$$

We shall denote this frame also by \mathcal{I}.
Let \mathcal{I} denote the set of all Ignatiev sequences

We define a Kripke frame:

$$\langle \mathcal{I}, \{ > n \}_{n \in \omega} \rangle$$

We shall denote this frame also by \mathcal{I}

We define \models by $\vec{A} \models \top$, for no \vec{A}, $\vec{A} \models \bot$.

Theorem GLP$_0$$_\omega$ $\vdash \phi$ \iff $\mathcal{I} \models \phi$
Let \mathcal{I} denote the set of all Ignatiev sequences

We define a Kripke frame:

$$\langle \mathcal{I}, \{> n\}_{n \in \omega} \rangle$$

We shall denote this frame also by \mathcal{I}

We define \models by $\vec{A} \models \top$, for no \vec{A}, $\vec{A} \models \bot$.

\models commutes with Boolean connectives: $\vec{A} \models \phi \land \psi$ if and only if $\vec{A} \models \phi$ and $\vec{A} \models \psi$, etc
Let \mathcal{I} denote the set of all Ignatiev sequences.

We define a Kripke frame:

$$\langle \mathcal{I}, \{ > n \}_{n \in \omega} \rangle$$

We shall denote this frame also by \mathcal{I}.

We define \models by $\vec{A} \models \top$, for no \vec{A}, $\vec{A} \models \bot$.

\models commutes with Boolean connectives: $\vec{A} \models \phi \land \psi$ if and only if $\vec{A} \models \phi$ and $\vec{A} \models \psi$, etc.

$\vec{A} \models \langle n \rangle \phi$ if and only if there is some \vec{B} with $\vec{A} > n \vec{B}$ so that $\vec{B} \models \phi$.

Theorem GLP$_0$ $\omega \vdash \phi$ \iff $\mathcal{I} \vdash \phi$

Proof by a p-morphic embedding of this structure into the generalization of Ignatiev’s model.

Let’s see a picture.
Let \mathcal{I} denote the set of all Ignatiev sequences.

We define a Kripke frame:

$$\langle \mathcal{I}, \{>n\}_{n \in \omega} \rangle$$

We shall denote this frame also by \mathcal{I}.

We define \models by $\bar{A} \models \top$, for no \bar{A}, $\bar{A} \models \bot$.

\models commutes with Boolean connectives: $\bar{A} \models \phi \land \psi$ if and only if $\bar{A} \models \phi$ and $\bar{A} \models \psi$, etc.

$\bar{A} \models \langle n \rangle \phi$ if and only if there is some \bar{B} with $\bar{A} >_n \bar{B}$ so that $\bar{B} \models \phi$.

Theorem $\text{GLP}_\omega^0 \models \phi \iff \mathcal{I} \models \phi$.
Let \mathcal{I} denote the set of all Ignatiev sequences

We define a Kripke frame:

$\langle \mathcal{I}, \{ > n \}_{n \in \omega} \rangle$

We shall denote this frame also by \mathcal{I}

We define \vDash by $\tilde{A} \vDash \top$, for no \tilde{A}, $\tilde{A} \vDash \bot$.

\vDash commutes with Boolean connectives: $\tilde{A} \vDash \phi \land \psi$ if and only if $\tilde{A} \vDash \phi$ and $\tilde{A} \vDash \psi$, etc

$\tilde{A} \vDash \langle n \rangle \phi$ if and only if there is some \tilde{B} with $\tilde{A} > n \tilde{B}$ so that $\tilde{B} \vDash \phi$

Theorem $\text{GLP}_0^0 \vdash \phi \iff \mathcal{I} \vDash \phi$

Proof by a p-morphic embedding of this structure into the generalization of Ignatiev’s model.
Let \mathcal{I} denote the set of all Ignatiev sequences.

We define a Kripke frame:

$$\langle \mathcal{I}, \{ > n \}_{n \in \omega} \rangle$$

We shall denote this frame also by \mathcal{I}.

We define \models by $\mathcal{A} \models \top$, for no \mathcal{A}, $\mathcal{A} \models \bot$.

\models commutes with Boolean connectives: $\mathcal{A} \models \phi \land \psi$ if and only if $\mathcal{A} \models \phi$ and $\mathcal{A} \models \psi$, etc.

$\mathcal{A} \models \langle n \rangle \phi$ if and only if there is some \mathcal{B} with $\mathcal{A} > n \mathcal{B}$ so that $\mathcal{B} \models \phi$.

Theorem $\text{GLP}_0^\omega \vdash \phi \iff \mathcal{I} \vdash \phi$

Proof by a p-morphic embedding of this structure into the generalization of Ignatiev’s model.

Let’s see a picture.
We define the Π_{n+1} proof-theoretic ordinal of a theory U as follows:
We define the Π_{n+1} proof-theoretic ordinal of a theory U as follows:

$$|U|_{\Pi_{n+1}} = \sup\{\xi \mid T_\xi^n \subseteq U\}.$$
We define the Π_{n+1} proof-theoretic ordinal of a theory U as follows:

$|U|_{\Pi_{n+1}} = \sup\{\xi \mid T^\xi_n \subseteq U\}$.

For U a arithmetical theory we define its Turing-Taylor expansion by
We define the Π_{n+1} proof-theoretic ordinal of a theory U as follows:

$|U|_{\Pi_{n+1}} = \sup\{\xi \mid T_{\xi}^n \subseteq U\}.$

For U a arithmetical theory we define its *Turing-Taylor* expansion by

$\text{tt}(U) := \bigcup_{n=0}^{\infty} T_{|U|_{\Pi_{n+1}}}^n$
We define the Π_{n+1} proof-theoretic ordinal of a theory U as follows:

- $|U|_{\Pi_{n+1}} = \sup\{\xi \mid T^\xi \subseteq U\}$.

For U a arithmetical theory we define its *Turing-Taylor* expansion by

$\text{tt}(U) := \bigcup_{n=0}^\infty T^n_{|U|_{\Pi_{n+1}}}$

In case $U \equiv \text{tt}(U)$ we say that U has a convergent *Turing-Taylor* expansion.
We will now link Ignatiev’s model to Turing-Taylor expansions
▶ We will now link Ignatiev’s model to Turing-Taylor expansions
▶ Let us recall:

\[
\begin{align*}
T_0 & := T; \\
T_{\alpha + 1} & := T_\alpha \cup \{ \langle i \rangle \}_{T_\alpha} \top; \\
T_\lambda & := \bigcup_{\alpha < \lambda} T_\alpha \text{ for limit } \lambda.
\end{align*}
\]
We will now link Ignatiev’s model to Turing-Taylor expansions

Let us recall:

\[T^i_0 := T; \]
We will now link Ignatiev’s model to Turing-Taylor expansions

Let us recall:

- $T^i_0 := T$
- $T^i_{\alpha + 1} := T^i_\alpha \cup \{ \langle i \rangle_{T^i_\alpha} \top \}$
We will now link Ignatiev’s model to Turing-Taylor expansions.

Let us recall:

- $T^i_0 := T$;
- $T^i_{\alpha+1} := T^i_\alpha \cup \{ \langle i \rangle_{T^i_\alpha \top} \}$;
- $T^i_\lambda := \bigcup_{\alpha < \lambda} T^i_\alpha$ for limit λ.
We will now link Ignatiev’s model to Turing-Taylor expansions

Let us recall:

- $T_0^i := T$
- $T_{\alpha+1}^i := T_{\alpha}^i \cup \{ \langle i \rangle^{T_{\alpha}^i} \top \}$
- $T_{\lambda} := \bigcup_{\alpha<\lambda} T_{\alpha}$ for limit λ.

We shall use the ordinal notation system $\langle B_n, <n \rangle$ to label the Turing progression based on n-consistency.
We will now link Ignatiev’s model to Turing-Taylor expansions

Let us recall:

1. $T_i^0 := T$
2. $T_i^{α+1} := T_i^α \cup \{ \langle i \rangle_{T_i^α \uparrow} \}$
3. $T_λ := \bigcup_{α<λ} T_α$ for limit $λ$.

We shall use the ordinal notation system $⟨B_n, <_n⟩$ to label the Turing progression based on n-consistency.

Thus, T_3^1 denotes $T_ω^1$.
We will now link Ignatiev’s model to Turing-Taylor expansions

Let us recall:

- $T^i_0 := T$;
- $T^i_{\alpha+1} := T^i_\alpha \cup \{ \langle i \rangle^{T^i_\alpha \top} \}$;
- $T^\lambda := \bigcup_{\alpha < \lambda} T^\lambda_\alpha$ for limit λ.

We shall use the ordinal notation system $\langle B_n, <_n \rangle$ to label the Turing progression based on n-consistency.

Thus, T^1_3 denotes $T^1_{\omega \omega}$, and T^2_3 denotes T^2_{ω}.
We will now link Ignatiev’s model to Turing-Taylor expansions.

Let us recall:

- \(T_0^i := T \);
- \(T_{\alpha+1}^i := T_\alpha^i \cup \{ \langle i \rangle_{T_\alpha^i} \top \} \);
- \(T_\lambda := \bigcup_{\alpha < \lambda} T_\alpha \) for limit \(\lambda \).

We shall use the ordinal notation system \(\langle B_n, <_n \rangle \) to label the Turing progression based on \(n \)-consistency.

Thus, \(T_3^1 \) denotes \(T^1_{\omega \omega} \),

and \(T_3^2 \) denotes \(T^2_\omega \),

and \(T_3^3 \) denotes \(T^2_1 \).
Theorem

For each worm A:

$$T + A \equiv \bigcup_{n=0}^{\infty} T^n(A)$$
Theorem
For each worm $A : T + A \equiv \bigcup_{n=0}^{\infty} T_{h_n}(A)$

Theorem
For each worm $A : T + A \equiv \bigcup_{n=0}^{\infty} T_{A}^{n}$
Theorem
For each worm A: $T + A \equiv \bigcup_{n=0}^{\infty} T_{h_n}(A)$

Theorem
For each worm A: $T + A \equiv \bigcup_{n=0}^{\infty} T_A^n$

Compare this to

$$f(x) := \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$
Theorem The Ignatiev sequences exactly correspond to those sub-theories of PA that have a convergent Turing-Taylor expansion.
Theorem The Ignatiev sequences exactly correspond to those sub-theories of PA that have a convergent Turing-Taylor expansion

That is, for each such theory U, we have that $\text{tt}(U) \in \mathcal{I}$
Theorem The Ignatiev sequences exactly correspond to those sub-theories of PA that have a convergent Turing-Taylor expansion.

That is, for each such theory U, we have that $tt(U) \in \mathcal{I}$

and for each $\tilde{A} \in \mathcal{I}$, there is a theory U so that $tt(U) = \tilde{A}$
Theorem The Ignatiev sequences exactly correspond to those sub-theories of \mathbb{PA} that have a convergent Turing-Taylor expansion

That is, for each such theory U, we have that $\text{tt}(U) \in I$

and for each $\vec{A} \in I$, there is a theory U so that $\text{tt}(U) = \vec{A}$

This yields a roadmap to conservation results!
We proof of the theorem uses three main results.
We proof of the theorem uses three main results
We shall see why worms are better than the more familiar ordinal notations in this context
We proof of the theorem uses three main results

We shall see why worms are better than the more familiar ordinal notations in this context

For each number n and each GLP$_{\omega}$ worm A, $\text{GLP}_\omega \vdash A \leftrightarrow h_n(A) \land r_n(A)$
We proof of the theorem uses three main results

We shall see why worms are better than the more familiar ordinal notations in this context

For each number n and each GLP_ω worm A, $\text{GLP}_\omega \vdash A \leftrightarrow h_n(A) \land r_n(A)$ (here, $r_n(A)$ denotes the n remainder of A so that $A = h_n(A)r_n(A)$)
We proof of the theorem uses three main results

We shall see why worms are better than the more familiar ordinal notations in this context

- For each number n and each GLP_ω worm A, $GLP_\omega \vdash A \leftrightarrow h_n(A) \land r_n(A)$ (here, $r_n(A)$ denotes the nth remainder of A so that $A = h_n(A)r_n(A)$)
- For each worm $A \in W_n$ we have $T + A \equiv_n T^n_A$ (Beklemishev)
We proof of the theorem uses three main results

We shall see why worms are better than the more familiar ordinal notations in this context

For each number n and each GLP$_\omega$ worm A,
$$\text{GLP}_\omega \vdash A \leftrightarrow h_n(A) \land r_n(A)$$
(here, $r_n(A)$ denotes the n remainder of A so that $A = h_n(A)r_n(A)$)

For each worm $A \in \mathbb{W}_n$ we have $T + A \equiv_n T_A^n$ (Beklemishev)

For each worm A:
$$T + A \equiv \bigcup_{n=0}^{\infty} T_{h_n(A)}^n$$ (JjJ)
We proof of the theorem uses three main results

We shall see why worms are better than the more familiar ordinal notations in this context

- For each number n and each GLP$_\omega$ worm A, $\text{GLP}_\omega \vdash A \iff h_n(A) \land r_n(A)$ (here, $r_n(A)$ denotes the n remainder of A so that $A = h_n(A) r_n(A)$)
- For each worm $A \in \mathbb{W}_n$ we have $T + A \equiv_n T^n_A$ (Beklemishev)
- For each worm $A : T + A \equiv \bigcup_{n=0}^{\infty} T^n_{h_n(A)}$ (JjJ)

Corollaries:
We proof of the theorem uses three main results

- We shall see why worms are better than the more familiar ordinal notations in this context

 - For each number \(n \) and each GLP_\(\omega \) worm \(A \),
 \[
 \text{GLP}_\omega \vdash A \leftrightarrow h_n(A) \land r_n(A) \quad \text{(here, } r_n(A) \text{ denotes the } n \text{ remainder of } A \text{ so that } A = h_n(A)r_n(A))
 \]
 - For each worm \(A \in \mathbb{W}_n \) we have \(T + A \equiv_n T^n_A \) (Beklemishev)
 - For each worm \(A : T + A \equiv \bigcup_{n=0}^{\infty} T^n_{h_n(A)} \) (JjJ)

- Corollaries:
 - For each worm \(A \in \mathbb{W}_n \) we have \(T + nA \equiv T^n_{nA} \)
We proof of the theorem uses three main results

We shall see why worms are better than the more familiar ordinal notations in this context

- For each number n and each GLP$_\omega$ worm A, $\text{GLP}_\omega \vdash A \leftrightarrow h_n(A) \land r_n(A)$ (here, $r_n(A)$ denotes the n remainder of A so that $A = h_n(A) r_n(A)$)
- For each worm $A \in W_n$ we have $T + A \equiv_n T^n_A$ (Beklemishev)
- For each worm $A : T + A \equiv \bigcup_{n=0}^{\infty} T^n_{h_n(A)}$ (JjJ)

Corollaries:

- For each worm $A \in W_n$ we have $T + nA \equiv T^n_{nA}$
- For each worm $A \in W_n$ $T^n_A \vdash T^m_A$ for $m < n$
tt(U) denotes \langle |U|_{\Pi_1^0}, |U|_{\Pi_2^0}, |U|_{\Pi_3^0}, \ldots \rangle.
tt(\(U\)) denotes \(\langle |U|_{\Pi_1^0}, |U|_{\Pi_2^0}, |U|_{\Pi_3^0}, \ldots \rangle\).

Likewise, with every sequence \(\vec{\alpha} = \langle \alpha_0, \alpha_1, \ldots \rangle\) of ordinals below \(\varepsilon_0\) we can naturally associate a sub theory \((\vec{\alpha})_{tt}\) of \(\text{PA}\) as follows

\[
(\vec{\alpha})_{tt} := \bigcup_{n=0}^{\infty} \text{EA}^n_{\alpha_n}.
\]
tt(\mathcal{U}) \text{ denotes } \langle |\mathcal{U}|_{\Pi^0_1}, |\mathcal{U}|_{\Pi^0_2}, |\mathcal{U}|_{\Pi^0_3}, \ldots \rangle.

Likewise, with every sequence \vec{\alpha} = \langle \alpha_0, \alpha_1, \ldots \rangle of ordinals below \varepsilon_0 we can naturally associate a sub theory \langle \vec{\alpha} \rangle_{tt} of PA as follows

\langle \vec{\alpha} \rangle_{tt} := \bigcup_{n=0}^{\infty} EA_{\alpha_n}^n.

Likewise, with every sequence \vec{A} = \langle A_0, A_1, \ldots \rangle of GLP_\omega worms we can naturally associate a sub theory \langle \vec{A} \rangle_{tt} of PA as follows

\langle \vec{A} \rangle_{tt} := \bigcup_{n=0}^{\infty} EA_{A_n}^n.
The monomials in Turing-Taylor progressions are the T^n_A
The monomials in Turing-Taylor progressions are the T^n_A
They are not entirely independent!
The monomials in Turing-Taylor progressions are the T^n_A.

- They are not entirely independent!

Example: $T^1_1 + T^0_{01} \equiv T^1_1 + T^0_{01}$.
The monomials in Turing-Taylor progressions are the T^n_A.
They are not entirely independent!
Example: $T_1^1 + T_0^0 \equiv T_1^1 + T_0^0$.
$T_1^1 \equiv T + \langle 1 \rangle^\top$, and
The monomials in Turing-Taylor progressions are the T^n_A.

They are not entirely independent!

Example: $T_1^1 + T_0^0 \equiv T_1^1 + T_{101}^0$.

$T_1^1 \equiv T + \langle 1 \rangle \top$, and

$T_0^0 \equiv T_{01}^0$.

Thus, $T_1^1 + T_0^0 \equiv T + \langle 1 \rangle \top + \langle 0 \rangle \langle 1 \rangle \top$.

$\equiv T_1^1 + T_{0\omega}^0 + 2$.

In the classical notation system this reads $T_1^1 + T_{0\omega}^{\omega+1} \equiv T_1^1 + T_{0\omega}^{\omega \cdot 2}$.

The example shows that in general $\text{tt}((\vec{A})_{\text{tt}}) \neq \vec{A}$!
The monomials in Turing-Taylor progressions are the T^n_A

They are not entirely independent!

Example: $T^1_1 + T^0_{01} \equiv T^1_1 + T^0_{101}$.

$T^1_1 \equiv T + \langle 1 \rangle^\top$, and

$T^0_{01} \equiv T^0_{01}$.

Thus, $T^1_1 + T^0_{01} \equiv T + \langle 1 \rangle^\top + \langle 0 \rangle \langle 1 \rangle^\top$.

The monomials in Turing-Taylor progressions are the T^n_A.

They are not entirely independent!

Example: $T^1_1 + T^0_{01} \equiv T^1_1 + T^0_{101}$.

$T^1_1 \equiv T + \langle 1 \rangle^\top$, and

$T^0_{01} \equiv T^0_{01}$.

Thus, $T^1_1 + T^0_{01} \equiv T + \langle 1 \rangle^\top + \langle 0 \rangle \langle 1 \rangle^\top$.

Equivalent to $T + \langle 1 \rangle \langle 0 \rangle \langle 1 \rangle^\top$.
The monomials in Turing-Taylor progressions are the T^n_A

They are not entirely independent!

Example: $T^1_1 + T^0_{01} \equiv T^1_1 + T^0_{101}$.

$T^1_1 \equiv T + \langle 1 \rangle^\top$, and

$T^0_{01} \equiv T^0_{01}$.

Thus, $T^1_1 + T^0_{01} \equiv T + \langle 1 \rangle^\top + \langle 0 \rangle \langle 1 \rangle^\top$.

Equivalent to $T + \langle 1 \rangle \langle 0 \rangle \langle 1 \rangle^\top$

Which is in turn equivalent to $T^1_1 + T^0_{101}$
The monomials in Turing-Taylor progressions are the T^n_A

They are not entirely independent!

Example: $T^1_1 + T^0_{01} \equiv T^1_1 + T^0_{101}$.

$T^1_1 \equiv T + \langle 1 \rangle^T$, and

$T^0_{01} \equiv T^0_{01}$.

Thus, $T^1_1 + T^0_{01} \equiv T + \langle 1 \rangle^T + \langle 0 \rangle \langle 1 \rangle^T$.

Equivalent to $T + \langle 1 \rangle \langle 0 \rangle \langle 1 \rangle^T$

Which is in turn equivalent to $T^1_1 + T^0_{101}$

In the classical notation system this reads

$$T^1_1 + T^0_{\omega+1} \equiv T^1_1 + T^0_{\omega\cdot 2}$$
The monomials in Turing-Taylor progressions are the T^n_A

They are not entirely independent!

Example: $T^1_1 + T^0_{01} \equiv T^1_1 + T^0_{101}$.

$T^1_1 \equiv T + \langle 1 \rangle \top$, and

$T^0_{01} \equiv T^0_{01}$.

Thus, $T^1_1 + T^0_{01} \equiv T + \langle 1 \rangle \top + \langle 0 \rangle \langle 1 \rangle \top$.

Equivalent to $T + \langle 1 \rangle \langle 0 \rangle \langle 1 \rangle \top$

Which is in turn equivalent to $T^1_1 + T^0_{101}$

In the classical notation system this reads

$T^1_1 + T^0_{\omega+1} \equiv T^1_1 + T^0_{\omega.2}$

The example shows that in general $\text{tt}(\langle \bar{A} \rangle_{\text{tt}}) \neq \bar{A}$!
The monomials in Turing-Taylor progressions are the T^n_A

They are not entirely independent!

Example: $T^1_1 + T^0_{01} \equiv T^1_1 + T^0_{101}$.

$T^1_1 \equiv T + \langle 1 \rangle ^\top$, and

$T^0_{01} \equiv T^0_{01}$.

Thus, $T^1_1 + T^0_{01} \equiv T + \langle 1 \rangle ^\top + \langle 0 \rangle \langle 1 \rangle ^\top$.

Equivalent to $T + \langle 1 \rangle \langle 0 \rangle \langle 1 \rangle ^\top$

Which is in turn equivalent to $T^1_1 + T^0_{101}$

In the classical notation system this reads

$$T^1_1 + T^0_{\omega + 1} \equiv T^1_1 + T^0_{\omega ^2}$$

The example shows that in general $tt((\vec{A})_{tt}) \neq \vec{A}$

$tt((01, 1)_{tt}) = (101, 1) \neq (01, 1)$
Example: $T^1_1 + T^0_{01} \equiv T^1_1 + T^0_{101}$.
Example: \(T_1 + T_{01} \equiv T_1 + T_{0101} \).

With a slightly more involved reasoning, we can prove...
Example: $T_1^1 + T_0^0 \equiv T_1^1 + T_1^{101}$.

With a slightly more involved reasoning, we can prove

Lemma 1: Let $A \in S_{n+1}$ and $B \in S_n$. We have that
Example: \(T^1_1 + T^0_{01} \equiv T^1_1 + T^0_{101} \).

With a slightly more involved reasoning, we can prove

Lemma 1: Let \(A \in S_{n+1} \) and \(B \in S_n \). We have that

\[
T^{n+1}_A + T^n_{nB} \equiv_{n+1} T + AnB,
\]

and
Example: $T^{1}_{1} + T^{0}_{01} \equiv T^{1}_{1} + T^{0}_{101}$.

With a slightly more involved reasoning, we can prove

Lemma 1: Let $A \in S_{n+1}$ and $B \in S_{n}$. We have that

$$T^{n+1}_{A} + T^{n}_{nB} \equiv_{n+1} T + AnB,$$

and

$$T^{n+1}_{A} + T^{n}_{nB} \equiv_{n} T^{n}_{AnB}.$$
Example: $T_1^1 + T_0^0 \equiv T_1^1 + T_{101}^0$.

With a slightly more involved reasoning, we can prove

Lemma 1: Let $A \in S_{n+1}$ and $B \in S_n$. We have that

$$T_A^{n+1} + T_{nB}^n \equiv_{n+1} T + AnB,$$

and

$$T_A^{n+1} + T_{nB}^n \equiv_n T_{AnB}^n.$$

This nicely illustrates that worms are often better than Cantor
Example: $T_{1}^{1} + T_{01}^{0} \equiv T_{1}^{1} + T_{101}^{0}$.

With a slightly more involved reasoning, we can prove

Lemma 1: Let $A \in S_{n+1}$ and $B \in S_{n}$. We have that

$T_{A}^{n+1} + T_{nB}^{n} \equiv_{n+1} T + AnB$,

and

$T_{A}^{n+1} + T_{nB}^{n} \equiv_{n} T_{AnB}^{n}$.

This nicely illustrates that worms are often better than Cantor

Using these ingredients one easily proves
Example: $T_1^1 + T_0^{01} \equiv T_1^1 + T_{101}^0$.

With a slightly more involved reasoning, we can prove

Lemma 1: Let $A \in S_{n+1}$ and $B \in S_n$. We have that

$$T_A^{n+1} + T_{nB}^n \equiv_{n+1} T + AnB,$$

and

$$T_A^{n+1} + T_{nB}^n \equiv_n T_{AnB}^n.$$

This nicely illustrates that worms are often better than Cantor

Using these ingredients one easily proves

Theorem If U is some sub-theory of PA with a convergent Turing-Taylor expansion, so that $U \not\equiv_0 PA$, then $\text{tt}(U)$ defines a point in \mathcal{I}.

Joost J. Joosten

On hyper-arithmetic reflection principles
We would like to extend the results of the first section beyond first order
We would like to extend the results of the first section beyond first order

A central ingredient: syntactical complexity classes
We would like to extend the results of the first section beyond first order.
A central ingredient: syntactical complexity classes.
Like in the truth interpretation of GLP.
We would like to extend the results of the first section beyond first order.

A central ingredient: syntactical complexity classes.

Like in the truth interpretation of GLP.

Omega-rule interpretation is slightly better.
We would like to extend the results of the first section beyond first order

A central ingredient: syntactical complexity classes

Like in the truth interpretation of GLP

Omega-rule interpretation is slightly better

However, does not tie up with the Turing jump hierarchy
We would like to extend the results of the first section beyond first order.

A central ingredient: syntactical complexity classes.

Like in the truth interpretation of GLP.

Omega-rule interpretation is slightly better.

However, does not tie up with the Turing jump hierarchy.

Friedman, Godlfarb and Harrington come to the rescue!
Definition (Witness-comparison relation)

For $\phi := \exists x \phi_0(x)$ and $\psi := \exists x \psi_0(x)$ we define $\phi \leq \psi := \exists x (\phi_0(x) \land \forall y < x \neg \psi_0(x))$ and $\phi < \psi := \exists x (\phi_0(x) \land \forall y \leq x \neg \psi_0(x))$.

Theorem (Rosser's Theorem)

Let T be a consistent c.e. theory extending EA. There is some $\rho \in \Sigma_0^1$ which is undecidable in T. That is, $T \nvdash \rho$ and $T \nvdash \neg \rho$.

Proof

Consider $\rho \leftrightarrow \neg (2^\rho < 2^{\neg \rho})$.

I find it utterly amazing that something sensible can be proven using the witness comparison techniques!

Joost J. Joosten On hyper-arithmetic reflection principles
Definition (Witness-comparison relation)

For $\phi := \exists x \, \phi_0(x)$ and $\psi := \exists x \, \psi_0(x)$ we define

\[
\phi \leq \psi := \exists x \, (\phi_0(x) \land \forall y < x \, \neg \psi_0(x)) \quad \text{and}, \\
\phi < \psi := \exists x \, (\phi_0(x) \land \forall y \leq x \, \neg \psi_0(x)).
\]
Definition (Witness-comparison relation)

For $\phi := \exists x \, \phi_0(x)$ and $\psi := \exists x \, \psi_0(x)$ we define

$$\phi \leq \psi := \exists x \, (\phi_0(x) \land \forall y < x \, \neg \psi_0(y))$$

and,

$$\phi < \psi := \exists x \, (\phi_0(x) \land \forall y \leq x \, \neg \psi_0(y)).$$
Definition (Witness-comparison relation)

For $\phi := \exists x \phi_0(x)$ and $\psi := \exists x \psi_0(x)$ we define

$$\phi \leq \psi := \exists x (\phi_0(x) \land \forall y < x \neg \psi_0(x))$$

and,

$$\phi < \psi := \exists x (\phi_0(x) \land \forall y \leq x \neg \psi_0(x)).$$

Theorem (Rosser’s Theorem)

Let T be a consistent c.e. theory extending EA. There is some $\rho \in \Sigma^0_1$ which is undecidable in T. That is,

$$T \not\models \rho$$

and,

$$T \not\models \neg \rho.$$
Definition (Witness-comparison relation)

For $\phi := \exists x \phi_0(x)$ and $\psi := \exists x \psi_0(x)$ we define

$$\phi \leq \psi := \exists x (\phi_0(x) \land \forall y < x \neg \psi_0(x))$$

and,

$$\phi < \psi := \exists x (\phi_0(x) \land \forall y \leq x \neg \psi_0(x)).$$

Theorem (Rosser’s Theorem)

Let T be a consistent c.e. theory extending EA. There is some $\rho \in \Sigma^0_1$ which is undecidable in T. That is,

$$T \not\vdash \rho \quad \text{and},$$

$$T \not\vdash \neg \rho.$$

Proof Consider $\rho \leftrightarrow \neg (\Box \rho < \Box \neg \rho).$
Definition (Witness-comparison relation)

For $\phi := \exists x \phi_0(x)$ and $\psi := \exists x \psi_0(x)$ we define

$$\phi \leq \psi := \exists x (\phi_0(x) \land \forall y < x \neg \psi_0(x))$$

and,

$$\phi < \psi := \exists x (\phi_0(x) \land \forall y \leq x \neg \psi_0(x)).$$

Theorem (Rosser’s Theorem)

Let T be a consistent c.e. theory extending EA. There is some $\rho \in \Sigma^0_1$ which is undecidable in T. That is,

$$T \nvdash \rho \quad \text{and,}$$

$$T \nvdash \neg \rho.$$
Lemma

Let A and B be some formulas of logical complexity Σ_{n+1}^0 for $n < \omega$.

1. Both $A < B$ and $A \leq B$ are of complexity Σ_{n+1}^0;
2. $EA \vdash (A < B) \rightarrow (A \leq B)$;
3. $EA \vdash (A < B) \rightarrow (A \leq B)$;
4. $EA \vdash (A \leq B) \rightarrow A$;
5. $EA \vdash (A \leq B) \rightarrow \neg(B < A)$ and consequently;
6. $EA \vdash (A < B) \rightarrow \neg(B \leq A)$;
7. $EA \vdash [(B \leq B) \lor (A \leq A)] \rightarrow [(A \leq B) \lor (B < A)]$;
8. $EA \vdash A \land \neg(A \leq B) \rightarrow B$.

Theorem (FGH theorem)

Let T be any computably enumerable theory extending EA. For each $\sigma \in \Sigma^0_1$ we have that there is some $\rho \in \Sigma^0_1$ so that $\mathsf{EA} \vdash (\sigma \leftrightarrow 2^T \rho)$.

Proof.
Consider the fixpoint ρ for which $\mathsf{EA} \vdash \rho \leftrightarrow (\sigma \leq 2^T \rho)$.

This shows us that we can express a syntactical class using provability logics!

We wish to stretch this further.
Theorem (FGH theorem)

Let T be any computably enumerable theory extending EA. For each $\sigma \in \Sigma^0_1$ we have that there is some $\rho \in \Sigma^0_1$ so that

$$\text{EA} \vdash \Diamond_T \top \rightarrow (\sigma \leftrightarrow \square_T \rho).$$
Theorem (FGH theorem)

Let T be any computably enumerable theory extending EA. For each $\sigma \in \Sigma^0_1$ we have that there is some $\rho \in \Sigma^0_1$ so that

$$\text{EA} \vdash \Diamond_T \top \rightarrow (\sigma \leftrightarrow \Box_T \rho).$$
Theorem (FGH theorem)

Let T be any computably enumerable theory extending EA. For each $\sigma \in \Sigma^0_1$ we have that there is some $\rho \in \Sigma^0_1$ so that

$$EA \vdash \lozenge_T \top \rightarrow (\sigma \leftrightarrow \Box_T \rho).$$

Proof.
Consider the fixpoint ρ for which $EA \vdash \rho \leftrightarrow (\sigma \leq \Box \rho)$. □
Theorem (FGH theorem)

Let T be any computably enumerable theory extending EA. For each $\sigma \in \Sigma^0_1$ we have that there is some $\rho \in \Sigma^0_1$ so that

$$\text{EA} \vdash \Diamond_T \top \rightarrow (\sigma \leftrightarrow \Box_T \rho).$$

Proof.

Consider the fixpoint ρ for which $\text{EA} \vdash \rho \leftrightarrow (\sigma \leq \Box \rho)$.

This shows us that we can express a syntactical class using provability logics!
Theorem (FGH theorem)

Let T be any computably enumerable theory extending EA. For each $\sigma \in \Sigma^0_1$ we have that there is some $\rho \in \Sigma^0_1$ so that

$$\text{EA} \vdash \Diamond_T \top \rightarrow (\sigma \leftrightarrow \Box_T \rho).$$

Proof.

Consider the fixpoint ρ for which $\text{EA} \vdash \rho \leftrightarrow (\sigma \leq \Box \rho)$.

This shows us that we can express a syntactical class using provability logics!

We wish to stretch this further.
Visser’s proof used $A \rightarrow A \leq A$ for $A \in \Sigma_1$.
Visser’s proof used $A \rightarrow A \leq A$ for $A \in \Sigma_1$.

Lemma

Let $A \in \Sigma_{n+1}^0$, then the schema $A \rightarrow (A \leq A)$ is over EA provably equivalent to the least-number principle for Δ_n^0 formulas.
Visser’s proof used $A \rightarrow A \leq A$ for $A \in \Sigma_1$.

Lemma

Let $A \in \Sigma_{n+1}^0$, then the schema $A \rightarrow (A \leq A)$ is over EA provably equivalent to the least-number principle for Δ_n^0 formulas.

This can be avoided
Visser’s proof used $A \rightarrow A \leq A$ for $A \in \Sigma_1$.

Lemma

Let $A \in \Sigma_{n+1}^0$, then the schema $A \rightarrow (A \leq A)$ is over EA provably equivalent to the least-number principle for Δ_n^0 formulas.

- This can be avoided
- so FGH is generalizable over a weak base theory.
By $[n]_T^{\text{True}}$ we will denote the formalization of the predicate “provable in T together with all true Π^0_n sentences”.
By $[n]_T^{\text{True}}$ we will denote the formalization of the predicate “provable in T together with all true Π^0_n sentences”.

It is well-known that for recursive theories T we can write $[n]_T^{\text{True}}$ by a Σ^0_{n+1}-formula.
By $[n]^{\text{True}}_T$ we will denote the formalization of the predicate “provable in T together with all true Π^0_n sentences”.

It is well-known that for recursive theories T we can write $[n]^{\text{True}}_T$ by a Σ^0_{n+1}-formula.

Also, we have provable Σ^0_n completeness for these predicates, that is:
By $[n]^\text{True}_T$ we will denote the formalization of the predicate “provable in T together with all true Π^0_n sentences”.

It is well-known that for recursive theories T we can write $[n]^\text{True}_T$ by a Σ^0_{n+1}-formula.

Also, we have provable Σ^0_n completeness for these predicates, that is:

proposition

Let T be a computable theory extending EA and let ϕ be a Σ^0_{n+1} formula. We have that

$$EA \vdash \phi \rightarrow [n]^\text{True}_T \phi.$$
Theorem

Let T be any computably enumerable theory extending EA and let $n < \omega$. For each $\sigma \in \Sigma_{n+1}^0$ we have that there is some $\rho_n \in \Sigma_{n+1}^0$ so that

$$\text{EA} \vdash \langle n \rangle^\text{True}_T \rightarrow (\sigma \leftrightarrow [n]^\text{True}_T \rho_n).$$
Theorem

Let \(T \) be any computably enumerable theory extending \(\text{EA} \) and let \(n < \omega \). For each \(\sigma \in \Sigma^0_{n+1} \) we have that there is some \(\rho_n \in \Sigma^0_{n+1} \) so that

\[
\text{EA} \vdash \langle n \rangle_T^{\text{True}} \top \rightarrow (\sigma \leftrightarrow [n]_T^{\text{True}} \rho_n).
\]

▶ proof The proof runs entirely analogue to the proof of the classical FGH theorem.
Theorem

Let T be any computably enumerable theory extending EA and let $n < \omega$. For each $\sigma \in \Sigma_{n+1}^0$ we have that there is some $\rho_n \in \Sigma_{n+1}^0$ so that

$$EA \vdash \langle n \rangle^T \text{True} \to (\sigma \leftrightarrow [n]^T \text{True} \rho_n).$$

▶ proof The proof runs entirely analogue to the proof of the classical FGH theorem.

▶ Thus, for each number n we consider the fixpoint ρ_n so that

$$EA \vdash \rho_n \leftrightarrow (\sigma \leq [n]^T \text{True} \rho_n).$$
Theorem

Let T be any computably enumerable theory extending EA and let $n < \omega$. For each $\sigma \in \Sigma_{n+1}^0$ we have that there is some $\rho_n \in \Sigma_{n+1}^0$ so that

$$\text{EA} \vdash \langle n \rangle^T_{\text{True}} \top \rightarrow (\sigma \leftrightarrow [n]^T_{\text{True}} \rho_n).$$

▶ proof The proof runs entirely analogue to the proof of the classical FGH theorem.

▶ Thus, for each number n we consider the fixpoint ρ_n so that $\text{EA} \vdash \rho_n \leftrightarrow (\sigma \leq [n]^T_{\text{True}} \rho_n)$.

▶ Just using Σ_{n+1}^0-completeness now
Theorem

Let T be any computably enumerable theory extending EA and let $n < \omega$. For each $\sigma \in \Sigma_{n+1}^0$ we have that there is some $\rho_n \in \Sigma_{n+1}^0$ so that

$$\text{EA} \vdash \langle n \rangle^T_{\text{True}} \rightarrow (\sigma \leftrightarrow [n]^T_{\text{True}} \rho_n).$$

Proof The proof runs entirely analogue to the proof of the classical FGH theorem.

Thus, for each number n we consider the fixpoint ρ_n so that

$$\text{EA} \vdash \rho_n \leftrightarrow (\sigma \leq [n]^T_{\text{True}} \rho_n).$$

Just using Σ_{n+1}^0-completeness now
Theorem

Let \(T \) be any computably enumerable theory extending \(\text{EA} \) and let \(n < \omega \). For each \(\sigma \in \Sigma_{n+1}^0 \) we have that there is some \(\rho_n \in \Sigma_{n+1}^0 \) so that

\[
\text{EA} \vdash \langle n \rangle^\text{True}_T \rightarrow (\sigma \leftrightarrow [n]^\text{True}_T \rho_n).
\]

▶ proof The proof runs entirely analogue to the proof of the classical FGH theorem.

▶ Thus, for each number \(n \) we consider the fixpoint \(\rho_n \) so that

\[
\text{EA} \vdash \rho_n \leftrightarrow (\sigma \leq [n]^\text{True}_T \rho_n).
\]

▶ Just using \(\Sigma_{n+1}^0 \)-completeness now

▶ Corollary

Let \(T \) be a c.e. theory extending \(\text{EA} \) and let \(n \in \mathbb{N} \). For each formulas \(\varphi, \psi \) there is some \(\sigma \in \Sigma_{n+1}^0 \) so that

\[
T \vdash ([n]^\text{True}_T \varphi \lor [n]^\text{True}_T \psi) \leftrightarrow [n]^\text{True}_T \sigma.
\]
The \([n]^{\text{True}}\) predicates tie up with the arithmetical hierarchy:
The [n]True predicates tie up with the arithmetical hierarchy:
The $[n]^{\text{True}}$ predicates tie up with the arithmetical hierarchy:

Lemma

Let T be any c.e. theory and let $A \subseteq \mathbb{N}$. The following are equivalent:

1. A is c.e. in $\emptyset^{(n)}$;
2. A is 1-1 reducible to $\emptyset^{(n+1)}$;
3. A is definable on the standard model by a Σ_0^{n+1} formula;
4. A is definable on the standard model by a formula of the form $[n]^{\text{True}}_T \rho(\dot{x})$;
5. A is definable on the standard model by a formula of the form $[n]^{\text{True}}_T \rho(\dot{x})$ where $\rho(x) \in \Sigma_0^{n+1}$.

Joost J. Joosten

On hyper-arithmetic reflection principles
The $[n]^{\text{True}}$ predicates tie up with the arithmetical hierarchy:

Lemma

Let T be any c.e. theory and let $A \subseteq \mathbb{N}$. The following are equivalent

1. A is c.e. in $\emptyset^{(n)}$;
The $[n]^{\text{True}}$ predicates tie up with the arithmetical hierarchy:

Lemma

Let T be any c.e. theory and let $A \subseteq \mathbb{N}$. The following are equivalent

1. A is c.e. in $\emptyset^{(n)}$;
2. A is 1-1 reducible to $\emptyset^{(n+1)}$;
The $[n]^{\text{True}}$ predicates tie up with the arithmetical hierarchy:

Lemma

Let T be any c.e. theory and let $A \subseteq \mathbb{N}$. The following are equivalent

1. A is c.e. in $\emptyset^{(n)}$;
2. A is 1-1 reducible to $\emptyset^{(n+1)}$;
3. A is definable on the standard model by a Σ_{n+1}^0 formula;
The \([n]^{\text{True}}\) predicates tie up with the arithmetical hierarchy:

Lemma

Let \(T\) be any c.e. theory and let \(A \subseteq \mathbb{N}\). The following are equivalent

1. \(A\) is c.e. in \(\emptyset^{(n)}\);
2. \(A\) is 1-1 reducible to \(\emptyset^{(n+1)}\);
3. \(A\) is definable on the standard model by a \(\Sigma^0_{n+1}\) formula;
4. \(A\) is definable on the standard model by a formula of the form \([n]^{\text{True}}_T \rho(x)\);
The $[n]^{\text{True}}$ predicates tie up with the arithmetical hierarchy:

Lemma

Let T be any c.e. theory and let $A \subseteq \mathbb{N}$. The following are equivalent:

1. A is c.e. in $\emptyset^{(n)}$;
2. A is 1-1 reducible to $\emptyset^{(n+1)}$;
3. A is definable on the standard model by a Σ_{n+1}^0 formula;
4. A is definable on the standard model by a formula of the form $[n]_T^{\text{True}} \rho(\dot{x})$;
5. A is definable on the standard model by a formula of the form $[n]_T^{\text{True}} \rho(\dot{x})$ where $\rho(x) \in \Sigma_{n+1}^0$;
\[
[n + 1]_T^{\Omega} \varphi := \exists \psi \left(\forall x [n]_T^{\Omega} \psi(x) \land \Box_T (\forall x \psi(x) \rightarrow \varphi) \right)
\]

\[
[n]_T^{\Omega} \text{ is a } \Sigma^0_{2n+1} \text{-formula.}
\]

Lemma

Let T be a computable theory extending EA and let ϕ be a Σ^0_{2n+1} formula. We have that

\[
\mathsf{EA} \vdash \phi \rightarrow [n]_T^{\Omega} \phi.
\]

Proof.

By an external induction on n where each inductive step requires the application of an additional omega-rule.
Corollary

Let T be any computably enumerable theory extending \mathbb{EA} and let $n < \omega$. For each $\sigma \in \Sigma^0_{2n+1}$ we have that there is some $\rho_n \in \Sigma^0_{2n+1}$ so that

$$\mathbb{EA} \vdash \langle n \rangle^\Omega_T \top \rightarrow (\sigma \leftrightarrow [n]^\Omega_T \rho_n).$$
Lemma
Let T be any c.e. theory, let n be a natural number, and let $A \subseteq \mathbb{N}$. The following are equivalent:

1. A is definable on the standard model by a Σ^0_{n+1} formula;
2. A is definable on the standard model by a formula of the form $\Omega_T^\rho(\dot{x})$;

Runs out of phase!

We wish to use the best of both worlds

Joost J. Joosten

On hyper-arithmetic reflection principles
Lemma

Let T be any c.e. theory, let n be a natural number, and let $A \subseteq \mathbb{N}$. The following are equivalent

1. A is definable on the standard model by a Σ_0^{n+1} formula;
2. A is definable on the standard model by a formula of the form $\Omega^T_{\rho}(\dot{x})$;
Lemma

Let T be any c.e. theory, let n be a natural number, and let $A \subseteq \mathbb{N}$. The following are equivalent

1. A is definable on the standard model by a Σ_{2n+1}^0 formula;
Lemma

Let T be any c.e. theory, let n be a natural number, and let $A \subseteq \mathbb{N}$. The following are equivalent

1. A is definable on the standard model by a Σ^0_{2n+1} formula;
2. A is definable on the standard model by a formula of the form $[n]^{\Omega_T}_T \rho(x)$;
Lemma

Let T be any c.e. theory, let n be a natural number, and let $A \subseteq \mathbb{N}$. The following are equivalent

1. A is definable on the standard model by a Σ^0_{2n+1} formula;
2. A is definable on the standard model by a formula of the form $[\eta]^\Omega_T \rho(\dot{x})$;

Runs out of phase!
Lemma

Let T be any c.e. theory, let n be a natural number, and let $A \subseteq \mathbb{N}$. The following are equivalent

1. A is definable on the standard model by a Σ^0_{2n+1} formula;
2. A is definable on the standard model by a formula of the form $[\eta]^\text{Omega}_T \rho(x)$;

 Runs out of phase!

We wish to use the best of both worlds
\[[0]^T \phi := \Box T \phi, \quad \text{and} \]
\[[n + 1]^T \phi := \Box T \phi \lor \exists \psi \bigg(\bigwedge_{0 \leq m \leq n} \left(\langle m \rangle^T \psi \land \Box \langle m \rangle^T \psi \rightarrow \phi \right) \bigg). \]
Let T be a sound c.e. theory extending EA. We have for all $n \in \mathbb{N}$ that

1. $\text{EA} \vdash \forall \varphi \ (([n]^T_\square \varphi \rightarrow [n]^T_{\text{True}} \varphi))$;
2. $\text{EA} \vdash \langle n \rangle^T_{\text{True}} \top \rightarrow \forall \varphi \ ([n + 1]^T_\square \varphi \leftrightarrow [n + 1]^T_{\text{True}} \varphi))$;
3. $\text{EA} \vdash [n]^T_{\text{True}} \left(\forall \varphi \ ([n]^T_\square \varphi \leftrightarrow [n]^T_{\text{True}} \varphi) \right)$;
4. $\mathbb{N} \models \forall \varphi \ ([n]^T_\square \varphi \leftrightarrow [n]^T_{\text{True}} \varphi)$.
Theorem

Let T be a c.e. theory. We have for all $A \subseteq \mathbb{N}$ that the following are equivalent

1. A is c.e. in $\emptyset^{(n)}$;
2. A is 1-1 reducible to $\emptyset^{(n+1)}$;
3. A is definable on the standard model by a formula of the form $[n]^T \rho(x)$;
We now generalize to the transfinte
We now generalize to the transfinte
fixing a well-behaved ordinal
We now generalize to the transfinte
fixing a well-behaved ordinal
We now generalize to the transfinte
fixing a well-behaved ordinal

Theorem

The logic GLP_Λ is sound for strong enough theories T under the interpretation $\Box \mapsto [\lambda]^\Box,\Lambda_T$.
Definition
Let T be a c.e. theory. We define

- $\Delta^0_0 := \Sigma^0_0 := \Pi^0_0 := \Delta^0_0$;
- $\Sigma^\alpha_{\alpha+1} = \Sigma^\alpha_\alpha \cup \Pi^\alpha_\alpha \cup \{[\alpha]_T^\square \varphi(\dot{x}) \mid \varphi(x) \in \text{Form}\}$ for $\alpha > 0$;
- $\Pi^\alpha_{\alpha+1} = \Sigma^\alpha_\alpha \cup \Pi^\alpha_\alpha \cup \{\langle \alpha \rangle_\alpha^\square \varphi(\dot{x}) \mid \varphi(x) \in \text{Form}\}$ for $\alpha > 0$;
- $\Sigma^\lambda \triangleright := \Pi^\lambda \triangleright := \bigcup_{\alpha < \lambda} \Sigma^\alpha_\alpha$ for $\lambda \in \text{Lim}$.

Joost J. Joosten, On hyper-arithmetic reflection principles
Theorem/conjecture Let T be any c.e. theory, let $\xi < \Lambda$ for a natural ordinal notation system, and let $A \subseteq \mathbb{N}$. The following are equivalent

1. A is c.e. in $\emptyset(\xi)$;
2. A is 1-1 reducible to $\emptyset(\xi + 1)$;
3. A is definable on the standard model by a formula of the form $\exists x T(x)$.

So all the stuff about Turing progressions can be generalized in a straightforward fashion.

Joost J. Joosten
On hyper-arithmetic reflection principles
Theorem/conjecture Let T be any c.e. theory, let $\xi < \Lambda$ for a natural ordinal notation system, and let $A \subseteq \mathbb{N}$. The following are equivalent

1. A is c.e. in $\emptyset(\xi)$;
Theorem/conjecture Let T be any c.e. theory, let $\xi < \Lambda$ for a natural ordinal notation system, and let $A \subseteq \mathbb{N}$. The following are equivalent

1. A is c.e. in $\emptyset(\xi)$;
2. A is 1-1 reducible to $\emptyset(\xi+1)$;
Theorem/conjecture Let T be any c.e. theory, let $\xi < \Lambda$ for a natural ordinal notation system, and let $A \subseteq \mathbb{N}$. The following are equivalent

1. A is c.e. in $\emptyset(\xi)$;
2. A is 1-1 reducible to $\emptyset(\xi+1)$;
3. A is definable on the standard model by a formula of the form $[\xi]_T^\square \rho(\dot{x})$;
Theorem/conjecture Let T be any c.e. theory, let $\xi < \Lambda$ for a natural ordinal notation system, and let $A \subseteq \mathbb{N}$. The following are equivalent

1. A is c.e. in $\emptyset(\xi)$;
2. A is 1-1 reducible to $\emptyset(\xi+1)$;
3. A is definable on the standard model by a formula of the form $[\xi]_T^\Box \rho(\dot{x})$;

No longer runs out of phase
Theorem/conjecture Let \(T \) be any c.e. theory, let \(\xi < \Lambda \) for a natural ordinal notation system, and let \(A \subseteq \mathbb{N} \). The following are equivalent

1. \(A \) is c.e. in \(\emptyset(\xi) \);
2. \(A \) is 1-1 reducible to \(\emptyset(\xi + 1) \);
3. \(A \) is definable on the standard model by a formula of the form \([\xi]^T_\rho(\dot{x})\);

No longer runs out of phase

Theorem/conjecture: So all the stuff about Turing progressions can be generalized in a straight-forward fashion.
Definition

Let Γ be a class of formulas. For ordinals $\alpha, \beta < \Lambda$ and T a c.e. theory we define $\beta^{-\text{RFN}}_T(\Gamma)$ to be the schema $[\beta]_T^\square \varphi \rightarrow \varphi$ for $\varphi \in \Gamma$.

Instead of writing $0^{-\text{RFN}}_T(\Gamma)$ we shall just write $\text{RFN}_T^\Lambda(\Gamma)$.

We can now easily state and prove various equivalences between consistency statements and reflection principles.
Let T be a c.e. theory containing ECA_0.

1. $\text{ECA}_0 \vdash \text{RFN}^\Lambda_T(\Pi_{\alpha+1}^\square) \equiv \langle \alpha \rangle^\square_T \top$;

2. For $\beta \leq \alpha$, we have $\text{ECA}_0 \vdash \beta - \text{RFN}^\Lambda_T(\Pi_{\alpha+1}^\square) \equiv \langle \alpha \rangle^\square_T \top$;

3. For $\beta > \alpha$ we have that $\text{ECA}_0 \vdash \beta - \text{RFN}^\Lambda_T(\Pi_{\alpha+1}^\square) \equiv \langle \beta \rangle^\square_T \top$;

4. For $\beta > \alpha$ we have that $\text{ECA}_0 \vdash \beta - \text{RFN}^\Lambda_T(\Pi_{\alpha+1}^\square) \equiv \langle \max\{\alpha, \beta\} \rangle^\square_T \top$.

Joost J. Joosten

On hyper-arithmetic reflection principles