Integrable logarithmic connections with respect to a cusp

L. Narváez Macarro

First (motivating) lecture

Local Analytic Geometry

Erwin Schrödinger International Institute for Mathematical Physics

Vienna, November 28th - December 5th 2011

Let $D \subset X = \mathbb{C}^2$ be the cusp defined by the equation $h = x^2 - y^3 = 0$. A basis of the logarithmic derivations with respect to D is $\{\chi, \delta\}$ with $\chi = 3x\partial_x + 2y\partial_y$, $\delta = 3y^2\partial_x + 2x\partial_y$. We have $\chi(h) = 6h$, $\delta(h) = 0$ and $[\chi, \delta] = \delta$.

Let us denote by \mathcal{V}_X the subring of \mathcal{D}_X consisting of logarithmic differential operators with respect to D, i.e. $\mathcal{V}_X = \mathcal{O}_X[\delta_1, \delta_2]$.

Let us denote by $\mathcal{O} = \mathcal{O}_X, 0$, $\mathcal{D} = \mathcal{D}_X, 0$ and $\mathcal{V} = \mathcal{V}_X, 0$ the corresponding stalks at the origin.

Any $P \in \mathcal{V}$ can be expressed in a unique way as

$$P = \sum_{\alpha \in \mathbb{N}^2_{\text{finite}}} a_\alpha \chi^{\alpha_1} \delta^{\alpha_2}, \quad a_\alpha \in \mathcal{O}. \quad (1)$$

1 Integrable logarithmic connections of rank 1

An integrable logarithmic connection (with respect to D) of rank d is given by a free \mathcal{O}_X-module E of rank d, let us say with a basis $\{e_1, \ldots, e_d\}$, and an action of χ and δ given by matrices $A, B \in M_{d \times d}(\mathcal{O}_X)$:

$$\chi e^t = Ae^t, \quad \delta e^t = Be^t, \quad e = (e_1, \ldots, e_d)$$

satisfying the integrability condition:

$$\chi(B) = \delta(A) + [A, B] + B.$$

If E is an integrable logarithmic connection of rank 1 with a basis $\{e\}$, the action of χ and δ is determined by $a, b \in \mathcal{O}$ with $\chi e = ae, \delta e = be$ and the integrability condition becomes

$$\chi(b) - \delta(a) = b.$$

(1.1) Lemma. For any germ at the origin E of integrable logarithmic connection of rank 1, there is a basis $\{e\}$ of E and a constant $\alpha \in \mathbb{C}$ such that $\chi e = \alpha e, \delta e = 0$.

*Partially supported by MTM2010-19298 and FEDER.
Proof. Let \(\{e'\} \) be a basis of \(\mathcal{E} \) and set \(\chi e' = a'e', \delta e' = b'e' \). Let \(u \in \Theta^X \) be a unit and set \(e = ue' \). We have
\[
\chi e = (\chi(u)u^{-1} + a')e, \quad \delta e = (\delta(u)u^{-1} + b')e.
\]

We are going to show that we can choose the unit \(u \) in such a way that \(\chi(u)u^{-1} + a' = a'(0,0) \). Let us write \(a' = \sum_w a'_w \) and \(u = \sum_w u_w \), where \(w \in 2\mathbb{N} + 3\mathbb{N} \) and the \(a'_w, u_w \) are quasi-homogeneous polynomials of weight \(w \) with respect to weights 3 and 2 for \(x \) and \(y \) respectively.

The above condition is equivalent to \(\chi(u) = u(a'_0 - a') \), i.e.
\[
w u_w = - \sum_{k=0}^{w-1} u_k a'_{w-k} \quad \forall w \in 2\mathbb{N} + 3\mathbb{N}.
\]

By choosing \(u_0 = 1 \) we obtain recursively all the \(u_w \). The convergence of the series can be proven in the following way. Let \(C, \rho \geq 1 \) be such that \(|a'_w| \leq C \rho^w \) for all the weights \(w \), where \(\| - \| \) is the supremum norm on a small poly-disc centered at the origin. Assume that \(|u_k| \leq (C \rho)^k \) for all \(k < w \). Then,
\[
|u_w| \leq \frac{1}{w} \sum_{k=0}^{w-1} |u_k| |a'_{w-k}| \leq \frac{1}{w} \sum_{k=0}^{w-1} (C \rho)^k C \rho^{w-k} = \frac{1}{w} \left(\sum_{k=0}^{w-1} C^{k+1} \right) \rho^w \leq (C \rho)^w.
\]

Let us take \(\alpha = a'_0 \) and \(e = ue' \). By construction we have \(\chi e = \alpha e \). Let \(b \in \Theta \) be such that \(\delta e = be \). By the integrability condition we have \(\chi(b) - b = \delta(\alpha) = 0 \), but \(\chi - 1 \) is injective and so \(b = 0 \).

Q.E.D.

(1.2) Definition. Let \(\alpha \in \mathbb{C} \) be any constant. We denote by \(\mathcal{E}_\alpha = \Theta_X h^\alpha \) the integrable logarithmic connection (with respect to \(D \)) of rank 1 whose underlying \(\Theta_X \)-module is the free \(\Theta_X \)-module with basis \(h^\alpha \) and the action of logarithmic derivations is given by
\[
\chi h^\alpha = 6 \alpha h^\alpha, \quad \delta h^\alpha = 0.
\]

The germ at the origin of \(\Theta_X h^\alpha \) will be denoted by \(\Theta h^\alpha \).

It is clear that \(\mathcal{E}_\alpha \) is generated as \(\mathcal{V}_X \)-module by \(h^\alpha \).

(1.3) Exercise. Prove that \(\text{ann}_{\mathcal{V}_X} h^\alpha = \mathcal{V}_X (\chi - 6\alpha, \delta) \) and so \(\mathcal{E}_\alpha \simeq \mathcal{V}_X / \mathcal{V}_X (\chi - 6\alpha, \delta) \).

Proof. Hint: we proceed locally at any point \(p \in D \). If \(p = (x_0, y_0) \neq (0,0) \), by the inverse function theorem, we can take a new system of local coordinates centered at \(p \).
\[
x = x - x_0, \quad y = h(x, y).
\]

Then, the expression of \(\chi \) and \(\delta \) in terms of \((x, y) \) is
\[
\chi = 3(x + x_0) \partial_x + 6y \partial_y, \quad \delta = 3y^2 \partial_x.
\]

Consequently, \(\mathcal{V}_{X,p} (\chi - 6\alpha, \delta) = \mathcal{V}_{X,p} (y \partial_y - \alpha, \partial_x) \), but the expression of \(h \) in the new local coordinates is \(h = y \), and so \(\mathcal{V}_{X,p} = \Theta_{X,p} [\partial_x, y \partial_y] \). One easily sees that \(\text{ann}_{\mathcal{V}_{X,p}} y^\alpha = \mathcal{V}_{X,p} (y \partial_y - \alpha, \partial_x) \).

If \(p = (0,0) \) one has to use the expression \(\boxplus \) and a division argument by \(\chi - 6\alpha, \delta \).

Q.E.D.

(1.4) Proposition. With the above notations, there are natural isomorphisms of left \(\mathcal{V} \)-modules:
1. \(\mathcal{E}_\alpha \otimes_{\mathcal{E}_X} \mathcal{E}_\beta \simeq \mathcal{E}_{\alpha + \beta}, \alpha, \beta \in \mathbb{C} \).

2. \(\mathcal{E}_{-k} \simeq \mathcal{O}_X(kD), k \in \mathbb{Z} \).

3. \((\mathcal{E}_\alpha)^* = \text{Hom}_{\mathcal{O}_X}(\mathcal{E}_\alpha, \mathcal{O}_X) \simeq \mathcal{E}_{-\alpha} \).

(1.5) **Exercise.** Prove the preceding proposition. One has to remember the definition of the internal \(\text{Hom}_{\mathcal{O}_X}(-, -) \) and tensor product \(- \otimes_{\mathcal{O}_X} -\) of integrable logarithmic connections.

(1.6) **Definition.** We can also consider the left \(\mathcal{T}_X[s] \)-module \(\mathcal{O}_X[s]h^s \), where the action of logarithmic derivations is the obvious one. It is a sub-\(\mathcal{T}_X[s] \)-module of the Bernstein module \(\mathcal{O}_X[h^{-1}, s]h^s \). It is clear that the annhilator of \(h^s \) over \(\mathcal{T}_X[s] \) is the left ideal generated by \(\chi - 6s \) and \(\delta \), and so \(\mathcal{O}_X[s]h^s \simeq \mathcal{T}_X[s]/\mathcal{T}_X[s](\chi - 6s, \delta) \) (prove it!).

(1.7) **Proposition.** The annihilator of \(h^s \) over \(\mathcal{D}_X[s] \) is the left ideal generated by \(\chi - 6s \) and \(\delta \), or in other words, the canonical map

\[
Q \otimes (ah^s) \in \mathcal{D}_X[s] \otimes_{\mathcal{T}_X[s]} (\mathcal{O}_X[s]h^s) \mapsto Q(ah^s) \in \mathcal{D}_X[s] \cdot h^s \subset \mathcal{O}_X[h^{-1}, s]h^s
\]

is an isomorphism.

(1.8) **Exercise.** Prove the preceding proposition. One should understand the expression we obtain when we evaluate a differential operator on the symbol \(h^s \).

One also has to use the fact that in this case \(h_x, h_y \) form a regular sequence.

The Bernstein polynomial (global = local at the origin) of \(h \) is \(b(s) = (s + 1)(s + 5/6)(s + 7/6) \) and an explicit functional equation is given by

\[
b(s)h^s = P(h^{s+1}), \quad P = \frac{1}{2}x\partial_x^2 + \frac{1}{2}y\partial_x^2\partial_y - \frac{1}{4\pi} \partial_x^2 + \frac{3}{4} \partial_y^2.
\]

Let us call \(\mathcal{M}_\alpha = \mathcal{D}_X \otimes_{\mathcal{T}_X} \mathcal{E}_\alpha = \mathcal{D}_X/\mathcal{D}_X(\chi - 6\alpha, \delta) \). Let us also call \(\iota_\alpha : \mathcal{E}_\alpha \hookrightarrow \mathcal{E}_{-1} \) the map given by \(ah^\alpha \mapsto (ah)h^{\alpha-1} \), which induces a natural map \(\mathcal{M}_\alpha \to \mathcal{M}_{\alpha-1} \) sending \(Q \) to \(Qh \).

(1.9) **Proposition.** Let \(\alpha \in \mathbb{C} \) be a constant such that \(b(\alpha - i) \neq 0 \) for all integers \(i \geq 1 \). Then the natural maps

\[
g_\alpha : Q \otimes (ah^\alpha) \in \mathcal{M}_\alpha \mapsto Q(ah^\alpha) \in \mathcal{O}_X[h^{-1}]h^\alpha = \mathcal{E}_\alpha[\star D]
\]

\[
\mathcal{M}_\alpha \to \mathcal{M}_{\alpha-1} \to \cdots \to \mathcal{M}_{\alpha-k} \to \cdots, \quad k \in \mathbb{N}
\]

are isomorphisms. In particular, \(\mathcal{E}_\alpha[\star D] = \mathcal{O}_X[h^{-1}]h^\alpha = \mathcal{D}_Xh^{\alpha-k} \) for \(k \in \mathbb{N} \).

Proof. For the surjectivity of \(g_\alpha \) it is enough to show that for any integer \(k > 0 \) there is a differential operator \(L \) such that \(L(h^\alpha) = h^{-k}h^\alpha \), but from the Bernstein functional equation (2) we can take

\[
L = b_k(\alpha)^{-1}P_k, \quad b_k(s) = b(s - k) \cdots b(s - 2)b(s - 1).
\]

Let \(Q \in \mathcal{D} \) be such that \(Q(h^\alpha) = 0 \). The action of \(Q \) on \(h^s \) gives \(Q(h^s) = q(s)h^{-d}h^s \), with \(q(s) \in \mathcal{O}[s], \ d = \text{ord}Q \). Since \(Q(h^\alpha) = 0 \) we have \(q(\alpha) = 0 \).
and so $q(s) = (s - \alpha)q'(s)$, $q'(s) \in \mathcal{O}[s]$. From the functional equation again we obtain
\[b_d(s)h^{-d}h^s = P^d(h^s) \]
and $b_d(s)Q - (s - \alpha)q'(s)P^d \in \text{ann}_{\mathcal{O}[s]} h^s = \mathcal{O}[s](\chi - 6s, \delta)$. By taking $s = \alpha$ we deduce $b_d(\alpha)Q \in \mathcal{O}(\chi - 6\alpha, \delta)$, but from our hypotheses $b_d(\alpha) \neq 0$ and so $Q \in \mathcal{O}(\chi - 6\alpha, \delta)$. This shows that the map ϱ_α is injective.

With the same argument we obtain that $\varrho_{\alpha - i}$ is an isomorphism for all integers $i \geq 1$, and so the maps $\mathcal{M}_{\alpha - i+1} \rightarrow \mathcal{M}_{\alpha - i}$ are also isomorphisms. Q.E.D.

(1.10) Question. The above proposition is true for any germ of hypersurface $h = 0$ in any dimension. Is it true the opposite? i.e. if the natural maps
\[\mathcal{M}_\alpha \rightarrow \mathcal{M}_{\alpha - 1} \rightarrow \cdots \rightarrow \mathcal{M}_{\alpha - k} \rightarrow \cdots, \ k \in \mathbb{N} \]
are isomorphisms, is $b(\alpha - k) \neq 0$ for all integers $k > 0$?

The hypotheses of the proposition above are not satisfied for $\alpha \in \mathbb{N}$, $\alpha \in \frac{1}{4} + \mathbb{N}$ or $\alpha \in -\frac{1}{4} + \mathbb{N}$. But, what happens in these cases?

For $\alpha \in \mathbb{N}$ we have $\mathcal{O}_X[h^{-1}]h^\alpha = \mathcal{O}_X[h^{-1}] = \mathcal{O}_X[*D]$ and it is clear that the image of the map $\varrho_\alpha : \mathcal{M}_\alpha \rightarrow \mathcal{O}_X[h^{-1}]$ is \mathcal{O}_X. Also, it is easy to see that this map is not injective.

Let us see what happens for $\alpha = \frac{1}{6}$.

Let us consider the following commutative diagram
\[
\begin{array}{ccc}
\mathcal{M}_{1/6} & \rightarrow & \mathcal{D}_X h^{1/6} \\
\text{Id} \otimes \iota_{1/6} & \downarrow & \downarrow \text{inclusion} \\
\mathcal{M}_{-5/6} & \simeq & \mathcal{D}_X h^{-5/6}.
\end{array}
\]

(1.11) Computation. The natural map $\mathcal{M}_{1/6} \rightarrow \mathcal{M}_{-5/6}$ is neither injective nor surjective: its image is isomorphic to
\[\mathcal{D}_X/\mathcal{D}_X(\chi - 1, \delta, A) \]
with $A = 9y\partial_y^2\partial_y - 4\partial_y^3 + 180\partial_x^2$, and its kernel is isomorphic to $\mathcal{D}_X/\mathcal{D}_X(x, y)$. Moreover, the above \mathcal{D}_X-modules are simple and $\text{ann}_{\mathcal{D}_X} h^{1/6} = \mathcal{D}_X(\chi - 1, \delta, A)$. \[\square \]

Proof. The map $\text{Id} \otimes \iota_{1/6} : \mathcal{M}_{1/6} \rightarrow \mathcal{M}_{-5/6}$ is given by
\[F : Q \in \mathcal{D}_X/\mathcal{D}_X(\chi - 1, \delta) \mapsto Qh \in \mathcal{D}_X/\mathcal{D}_X(\chi + 5, \delta). \]
It is an isomorphism outside the origin (where h is a unit or a non-singular curve), so we can concentrate at the origin.

\[^{1}\text{In the version of these notes distributed during the course in Vienna there was a mistake: I stated that the surjection } \mathcal{M}_{1/6} \rightarrow \mathcal{D}_X h^{1/6} \text{ was an isomorphism, but this is obviously false. Its kernel coincides with the kernel of } \text{Id} \otimes \iota_{1/6} : \mathcal{M}_{1/6} \rightarrow \mathcal{M}_{-5/6}. \text{ I thank M. Granger for pointing out this error.} \]
Since the symbols $\sigma(\chi)$ and $\sigma(\delta)$ form a regular sequence in $\mathcal{O}_X[\xi, \eta] = \text{gr} \mathcal{D}_X$, we deduce (why?) that $\chi + 5, \delta$ is an involutive basis of the ideal $\mathcal{D}_X(\chi + 5, \delta)$. On the other hand, $\sigma(\chi)$ and $\sigma(\delta)$ vanish at $x = y = 0$ and $\sigma(A)$ does not vanish at $x = y = 0$, so we deduce that A does not belong to the ideal $\mathcal{D}_X(\chi + 5, \delta)$.

From the equality

$$Ah = (3xy\partial_x \partial_y + 2y^2 \partial_y^2 + 6x\partial_x + 12y\partial_y + 12)(\chi + 5) + (-3y^2 \partial_x \partial_y - 2x\partial_y^2 - 9y\partial_x)\delta$$

we deduce that the class of A is a non-zero element in $\text{ker} F$.

So we have a surjective map

$$\mathcal{N} := \mathcal{D}_X(\chi - 1, \delta, 9y\partial_x^2 \partial_y - 4\partial_y^2 + 18\partial_x^2) \to \text{Im} F$$

whose kernel must be supported by the origin (it is an isomorphism on $\mathbb{C}^2 - \{0\}$). Since the characteristic variety of \mathcal{N} does not contain the conormal of the origin we deduce that the preceding map is an isomorphism. Q.E.D.

(1.12) Proposition. For any $\alpha \in \mathbb{C}$ there is a natural isomorphisms $(\mathcal{M}_\alpha)^* \simeq \mathcal{M}_{-\alpha - 1}$, where * stands for the duality in D-module theory. Moreover, the following diagram is commutative

\[
\begin{array}{ccc}
(\mathcal{M}_\alpha)^* & \xrightarrow{(\text{nat.})} & \mathcal{M}_{-\alpha - 1} \\
\downarrow^\text{nat.} & & \downarrow^\text{nat.} \\
(\mathcal{M}_{\alpha - 1})^* & \xrightarrow{(\text{nat.})} & \mathcal{M}_{-\alpha}.
\end{array}
\]

Proof. Compute explicitly the dual $(\mathcal{M}_\alpha)^*$. Q.E.D.

(1.13) Corollary. For all integers $k > 0$, we have $\mathcal{D}_X h^{1/6} = \mathcal{D}_X h^{k+1/6}$ and the natural maps

$$\cdots \to \mathcal{M}_{1/6 + 3} \to \mathcal{M}_{1/6 + 2} \to \mathcal{M}_{1/6 + 1} \to \mathcal{M}_{1/6}$$

are isomorphisms.

The case $\alpha = -\frac{1}{6}$ is similar to the case $\alpha = \frac{1}{6}$.

(1.14) Computation. The map $\text{Id} \otimes t_{-1/6} : \mathcal{M}_{-1/6} \to \mathcal{M}_{-7/6}$ is neither injective nor surjective: its image is isomorphic to

$$\mathcal{D}_X/\mathcal{D}_X(\chi + 1, \delta, 9y\partial_x^2 - 4\partial_y^2)$$

and its kernel is isomorphic to $\mathcal{D}_X/\mathcal{D}_X(x, y)$. Moreover, the above \mathcal{D}_X-modules are simple and $\text{ann}_{\mathcal{D}_X} h^{-1/6} = \mathcal{D}_X(\chi + 1, \delta, 9y\partial_x^2 - 4\partial_y^2)$[2]

(1.15) Corollary. For all integers $k > 0$, we have $\mathcal{D}_X h^{-1/6} = \mathcal{D}_X h^{k-1/6}$ and the natural maps

$$\cdots \to \mathcal{M}_{-1/6 + 3} \to \mathcal{M}_{-1/6 + 2} \to \mathcal{M}_{-1/6 + 1} \to \mathcal{M}_{-1/6}$$

2Here a similar remark to the footnote in computation [1.11] proceeds.
are isomorphisms.

(1.16) Remark. (a) The left ideal \(\{Q \in D \mid Qh \in D(\chi + 5, \delta) \} \subset D \) is generated by \(\chi - 1, \delta, A \), and these operators form an involutive basis of the ideal.

(b) The left ideal \(\{Q \in D \mid Qh \in D(\chi + 7, \delta) \} \subset D \) is generated by \(\chi + 1, \delta, A' = 9y\partial^2_x - 4\partial^2_y \), and these operators form an involutive basis of the ideal.

Notice that \(A = A'\partial_y + 18\partial^2_y \).

Summary: For each \(\alpha \in \mathbb{C} \) we have

\[
\text{If } \alpha \notin \mathbb{Z}, \alpha \notin \pm \frac{1}{6} + \mathbb{Z}: \\
\cdots \simeq M_{\alpha+2} \simeq M_{\alpha+1} \simeq M_{\alpha} \simeq M_{\alpha-1} \simeq M_{\alpha-2} \simeq \cdots \simeq \mathcal{O}_X[h^{-1}]h^\alpha = E_\alpha[D]
\]

and \((M_\alpha)^* \simeq M_\alpha \).

\[
\text{If } \alpha \in \mathbb{Z}: \\
\cdots \simeq M_{\alpha+2} \simeq M_{\alpha+1} \simeq M_\alpha \simeq M_{\alpha-2} \simeq M_{\alpha-1} \simeq \cdots \simeq \mathcal{O}_X[h^{-1}]h^{1/6} = E_{\frac{1}{6}}[D]
\]

and the map \(M_0 \to M_{-1} \) is neither injective nor surjective: its image is isomorphic to \(\mathcal{O}_X \simeq \mathcal{O}_X / \mathcal{O}_X(\partial_x, \partial_y) \) and its kernel is isomorphic to \(\mathcal{D}_X / \mathcal{D}_X(x, y) \). Moreover \((M_{-1})^* \simeq M_0 \) and the image of the map \(M_0 \to M_{-1} \) is selfdual.

\[
\text{If } \alpha \in \frac{1}{6} + \mathbb{Z}: \\
\cdots \simeq M_{\frac{1}{6}+2} \simeq M_{\frac{1}{6}+1} \simeq M_{\frac{1}{6}} \simeq M_{\frac{1}{6}-1} \simeq M_{\frac{1}{6}-2} \simeq \cdots \simeq \mathcal{O}_X[h^{-1}]h^{1/6} = E_{\frac{1}{6}}[D]
\]

and the map \(M_{\frac{1}{6}} \to M_{\frac{1}{6}-1} \) is neither injective nor surjective: its image is \(\mathcal{D}_X h^{1/6} \simeq \mathcal{D}_X / \mathcal{D}_X(\chi - 1, \delta, 9y\partial^2_x \partial_y - 4\partial^2_y + 18\partial^2_y) \) and its kernel is isomorphic to \(\mathcal{D}_X / \mathcal{D}_X(x, y) \).

\[
\text{If } \alpha \in -\frac{1}{6} + \mathbb{Z}: \\
\cdots \simeq M_{-\frac{1}{6}+2} \simeq M_{-\frac{1}{6}+1} \simeq M_{-\frac{1}{6}-1} \simeq M_{-\frac{1}{6}-2} \simeq \cdots \simeq \mathcal{O}_X[h^{-1}]h^{-1/6} = E_{-\frac{1}{6}}[D]
\]

and the map \(M_{-\frac{1}{6}} \to M_{-\frac{1}{6}-1} \) is neither injective nor surjective: its image is \(\mathcal{D}_X h^{-1/6} \simeq \mathcal{D}_X / \mathcal{D}_X(\chi + 1, \delta, 9y\partial^2_x - 4\partial^2_y) \) and its kernel is isomorphic to \(\mathcal{D}_X / \mathcal{D}_X(x, y) \). Moreover, we have

\[
(\mathcal{D}_X h^{-1/6})^* \simeq \mathcal{D}_X h^{1/6}.
\]

(1.17) Question. Let \(h = 0 \) be a reduced equation defining a germ of hypersurface \(h = 0 \) in \(\mathbb{C}^n \), \(n \geq 2 \), and let \(I(s) \) be the annihilator of \(h^s \) over \(\mathcal{D}_X[s] \). Under which general hypotheses do we have an isomorphism

\[
(\mathcal{D}_X / I(\alpha))^* \simeq \mathcal{D}_X / I(-\alpha - 1)?
\]
2 Local systems on the complement of the cusp

Let us call $U = X - D$ and $j : U \hookrightarrow X$ the corresponding open inclusion. Since the equation of D is quasi-homogeneous, the local topology of $h : \mathbb{C}^2 \to \mathbb{C}$ at the germs at the origin is the “same” as the global one and we can also take $F = h^{-1}(1)$ as its Milnor fiber. The Milnor fibration gives rise to an exact sequence of groups

$$1 \to L = \pi_1(F) \to G = \pi_1(U) \to \pi_1(\mathbb{C}^*, 1) \to 1$$

for convenable base points. The group L is a free group of rank 2 and the group $\pi_1(\mathbb{C}^*, 1)$ is isomorphic to $(\mathbb{Z}, +)$ with “positive” generator δ. The restriction of the Milnor fibration to a big enough sphere centered at the origin gives rise to an exact sequence

$$1 \to L^\partial = \pi_1(F^\partial) \to G^\partial = \pi_1(U^\partial) = L^\partial \times \pi_1(\mathbb{C}^*, 1) \to \pi_1(\mathbb{C}^*, 1) \to 1.$$

Since the Milnor fibration restricted to the bord extends to the origin, the above sequence splits and there is a natural scission $\sigma : \pi_1(\mathbb{C}^*, 1) \to G$ and so we have that $G = L \ltimes \pi_1(\mathbb{C}^*, 1)$ with $\tau : \pi_1(\mathbb{C}^*, 1) \to \text{Aut}(L)$ given by $\tau(\delta)(\beta) = \sigma(\delta)\beta\sigma(\delta)^{-1}$. Actually, the automorphism $\tau(\delta) : L \to L$ is induced by the geometric monodromy $T : F \to F$ associated with the Milnor fibration. The bord of the Milnor fibration F^∂ is a cercle and its fundamental group is infinite cyclic with positive generator γ. Since the Milnor fibration restricted to the bord is trivial we have $\sigma(\delta)\gamma\sigma(\delta)^{-1} = \gamma$. To simplify, we identify $\pi_1(\mathbb{C}^*, 1)$ with its image by σ.

(2.1) Lemma. In the case of the cusp with equation $h = x^2 - y^3$ there is a basis of L with two elements a, b such that

$$\delta a b^{-1} = b^{-1}, \quad \delta b a^{-1} = b a$$

and so G has a presentation

$$G = \langle a, b, \delta; \delta a b^{-1} = b^{-1}, \delta b a^{-1} = b a \rangle.$$

(2.2) Definition. For any complex number $z \in \mathbb{C}^*$ let us call \mathcal{L}_z the local system on U of rank 1 given by the representation $\varrho_z : G \to GL(1, \mathbb{C}) = \mathbb{C}^*$ with

$$\varrho_z(\delta) = z, \quad \varrho_z(a) = \varrho_z(b) = 1.$$

It can be also described as the inverse image by h of the local system on \mathbb{C}^* given by the representation

$$m \in \mathbb{Z} \equiv \pi_1(\mathbb{C}^*, 1) \mapsto z^m \in \mathbb{C}^*.$$

(2.3) Proposition. With the above notations, there are natural isomorphisms of local systems on U:

1. $\mathcal{L}_z \otimes_{\mathbb{C}} \mathcal{L}_w \simeq \mathcal{L}_{zw}$, $z, w \in \mathbb{C}^*$.

7
2. \(\mathcal{D}_1 \simeq \mathbb{C}_U \).

3. \((\mathcal{D}_z)^* = \text{Hom}_{\mathbb{C}_U} (\mathcal{D}_z, \mathbb{C}_U) \simeq \mathcal{D}_{1/z} \).

(2.4) Proposition. For any local system \(\mathcal{L} \) on \(U \) of rank 1 there is a unique \(z \in \mathbb{C}^* \) such that \(\mathcal{L} \simeq \mathcal{L}_z \).

(2.5) Theorem. Let \(z \in \mathbb{C}^* \) be a non-zero constant. The following properties hold:

- If \(z \neq 1, e^{2\pi i z} : \text{DR}(\mathcal{M}_n) \simeq R_j \mathcal{L}_z \simeq j_* \mathcal{L}_z \simeq j_* \mathcal{L}_z \) for any \(\alpha \in \mathbb{C} \) such that \(e^{2\pi i \alpha} = z \).
- If \(z = 1, \text{DR}(\mathcal{M}_-k) \simeq R_j \mathcal{C}_U \) for any integer \(k \geq 1 \), \(\text{DR}(\mathcal{M}_k) \simeq j_* \mathcal{C}_U \) for any integer \(k \geq 0 \) and \(\text{DR}(\mathcal{O}_X) = \mathbb{C}_X \simeq j_* \mathcal{C}_U \).
- If \(z = e^{2\pi i z} : \text{DR}(\mathcal{M}_{1-k}) \simeq R_j \mathcal{L}_z \) for any integer \(k \geq 1 \), \(\text{DR}(\mathcal{M}_{1+k}) \simeq j_* \mathcal{L}_z \) for any integer \(k \geq 0 \) and \(\text{DR}(\mathcal{O}_X h^{1/6}) \simeq j_* \mathcal{L}_z \).
- If \(z = e^{-2\pi i z} : \text{DR}(\mathcal{M}_{-1-k}) \simeq R_j \mathcal{L}_z \) for any integer \(k \geq 1 \), \(\text{DR}(\mathcal{M}_{-1+k}) \simeq j_* \mathcal{L}_z \) for any integer \(k \geq 0 \) and \(\text{DR}(\mathcal{O}_X h^{-1/6}) \simeq j_* \mathcal{L}_z \).

(2.6) Remark. Let us call \(\mathcal{MC}_1 \) the set of isomorphism classes of integrable logarithmic connections with respect to \(D \) of rank 1, \(\mathcal{C}_{1} \) the set of isomorphism classes of regular meromorphic connections with respect to \(D \) of rank 1 and \(\mathcal{D}_1 \) the set of isomorphism classes of local systems on \(U \) of rank 1. There are natural bijective maps \(\mathcal{MC}_1 \leftrightarrow \mathbb{C}, \mathcal{MC}_1 \leftrightarrow \mathbb{C}/(\mathbb{Z}2\pi i), \mathcal{D}_1 \leftrightarrow \mathbb{C}^* \) in such a way that the diagram \(\mathcal{MC}_1 \rightarrow \mathcal{MC}_1 \rightarrow \mathcal{D}_1 \), where the first map is the localization along \(D \) and the second map is “taking the horizontal sections on \(U \)," corresponds to

\[
\mathbb{C} \xrightarrow{\text{nat.}} \mathbb{C}/(\mathbb{Z}2\pi i) \xrightarrow{\mathbb{Z} \mapsto e^{2\pi i \alpha}} \mathbb{C}^*.
\]

Moreover, the duality on \(\mathcal{MC}_1 \) corresponds to the map \(\alpha \in \mathbb{C} \mapsto -\alpha \in \mathbb{C} \) and the duality on \(\mathcal{D}_1 \) corresponds to the map \(z \in \mathbb{C}^* \mapsto z^{-1} \in \mathbb{C}^* \).

3 Local systems of rank two on the complement of the cusp

We consider again \(h : X = \mathbb{C}^2 \rightarrow \mathbb{C}, h(x,y) = x^2 - y^3, D = h^{-1}(0), j : U = X - D \hookrightarrow X \).

(3.1) Theorem. (MacPherson-Vilonen, Deligne, Verdier; 1982-83) A perverse sheaf \(\mathbf{K} \) on \(X \) stratified by \(\{0\}, D - \{0\}, U \) is determined by

\[
(\mathcal{D}, \mathbf{F}, u : R\psi_h \mathcal{D} \rightarrow \mathbf{F}, v : \mathbf{F} \rightarrow R\psi_h \mathcal{D})
\]

with \(\mathcal{D} = j^* \mathbf{K} \) a local system on \(U \), \(\mathbf{F} = \phi_0 \mathbf{K} \) a perverse sheaf on \(D \) (stratified w.r.t. \(\{0\}, D - \{0\} \)) and \(u, v \) maps of perverse sheaves such that

\[
\text{Id} + v \circ u = T_{\mathcal{D}} : R\psi_h \mathcal{D} \rightarrow R\psi_h \mathcal{D}.
\]
But \((D, 0) \simeq (\mathbb{C}, 0)\) and perverse sheaves on \(D\) stratified by \(\{0\}, D - \{0\}, U\) are well known.

(3.2) Theorem. (The computation of \(R\psi_h \mathcal{L}\)) Assume that the local system \(\mathcal{L}\) on \(U\) is given by a representation \(G = \pi_1(U) \to \text{GL}(E)\). The perverse sheaf \(R\psi_h \mathcal{L}\) on \(D\) is given by the diagram

\[
(E, \text{Hom}_{\mathbb{C}[L]}(I(L), E), U, V)
\]

with

\[
U : E \to \text{Hom}_{\mathbb{C}[L]}(I(L), E), \quad U(e)(g) = ge,
\]

\[
V : \text{Hom}_{\mathbb{C}[L]}(I(L), E) \to E, \quad V(\varphi) = \varphi(\gamma - 1).
\]

Moreover, the “monodromy automorphism” \(T_\mathcal{L} : R\psi_h \mathcal{L} \to R\psi_h \mathcal{L}\) is given by:

\[
t_1 : E \to E, \quad t_2 : \text{Hom}_{\mathbb{C}[L]}(I(L), E) \to \text{Hom}_{\mathbb{C}[L]}(I(L), E)
\]

with \(t_1(e) = \delta^{-1} e, t_2(\varphi)(g) = \delta^{-1} \varphi(\delta g \delta^{-1}),\) where \(I(L)\) is the augmentation ideal of \(L\), i.e. the kernel of \(\mathbb{C}[L] \to \mathbb{C}\).

(3.3) Corollary. (Explicit description; \([2]\)) The perverse sheaf \(\mathcal{K}\) on \(X\) stratified by \(\{0\}, D - \{0\}, U\) and determined by \((\mathcal{L}, \mathcal{F}, u : R\psi_h \mathcal{L} \to \mathcal{F}, v : \mathcal{F} \to R\psi_h \mathcal{L})\) is explicitly described by \(\mathcal{L}\) is given by a complex representation \(G = \pi_1(U) \to \text{GL}(E)\).

\(\mathcal{F}\) is given by a diagram of vector spaces \((C_1, C_2; p : C_1 \to C_2, q : C_2 \to C_1)\) with \(\text{Id} + q \circ p\) is \(\simeq\).

\((R\psi_h \mathcal{L}, T_\mathcal{L})\) is given by:

\[
(E, \text{Hom}_{\mathbb{C}[L]}(I(L), E), U, V) \cap (t_1, t_2) \text{ with }
\]

\[
U : E \to \text{Hom}_{\mathbb{C}[L]}(I(L), E), \quad U(e)(g) = ge,
\]

\[
V : \text{Hom}_{\mathbb{C}[L]}(I(L), E) \to E, \quad V(\varphi) = \varphi(\gamma - 1),
\]

and \(t_1(e) = \delta^{-1} e, t_2(\varphi)(g) = \delta^{-1} \varphi(\delta g \delta^{-1})\).

(3.4) Corollary. (A formula for the characteristic cycle) If our perverse sheaf \(\mathcal{K}\) on \(X\) is given by \(G \to \text{GL}(E), (C_1, C_2; p : C_1 \to C_2, q : C_2 \to C_1)\) and \(u_1 : E \to C_1, v_1 : C_1 \to E, u_2 : \text{Hom}_{\mathbb{C}[L]}(I(L), E) \to C_2, v_2 : C_2 \to \text{Hom}_{\mathbb{C}[L]}(I(L), E)\) with the corresponding commutativity conditions and \(\text{Id} + v_1 \circ u_1 = t_1, \text{Id} + v_2 \circ u_2 = t_2\), then:

\[
\text{CC}(\mathcal{K}) = m_2 T^*_X(X) + m_1 T^*_{D_{nu}}(X) + m_0 T^*_h(X),
\]

\(m_2 = \dim E, m_1 = \dim C_1, m_0 = \mu \dim E + (1 - e) \dim C_1 + \dim C_2,\) where \(\mu\) is the Milnor number of \(h : (\mathbb{C}^2, 0) \to (\mathbb{C}, 0)\) and \(e\) is the multiplicity of \((D, 0)\).

The results above are true for any germ of irreducible plane curve. In the case of the cusp above we have:
\[L \leftrightarrow \rho : G = \langle a, b, \delta; \delta a \delta^{-1} = b^{-1}, \delta b \delta^{-1} = ba \rangle \to \text{GL}(E) : \]
\[\rho(a) = A, \quad \rho(b) = B, \quad \rho(\delta) = \Delta. \]

- \(R\psi_h \mathcal{L} \) is the perverse sheaf on \(D \) given by:

\[
(E, E^2, \begin{pmatrix} A - I \\ B - I \end{pmatrix}, (B - BAB^{-1} A^{-1}, I - BAB^{-1}))
\]

and \(T\mathcal{L} \) is given by:

\[
t_1 = \Delta^{-1}, \quad t_2 = \begin{pmatrix} 0 & -\Delta^{-1}B^{-1} \\ \Delta^{-1}B^{-1} & \Delta^{-1} \end{pmatrix}.
\]

(3.5) Corollary. (Description of intersection complexes) Assume that \(L \) is a local system on \(U = X - D \). The intersection complex \(j_!^* L \) is the perverse sheaf given by

\[
(\mathcal{L}, \text{Im}(T\mathcal{L} - 1), T\mathcal{L} - 1, \text{inclusion}).
\]

Moreover if \(\mathcal{L} \) is associated with the representation \(G \to \text{GL}(E) \), then

\[
\text{CC}(j_!^* L) = m_2 T_\mathcal{L}^*(X) + m_1 T_{D_{reg}}^*(X) + m_0 T_0^*(X),
\]

where

\[
m_2 = \dim E, \quad m_1 = \text{rank}(t_1 - 1), \quad m_0 = \text{rank}(t_2 - 1) - \mu m_2 + (\text{mult}_0(D) - 1)m_1,
\]

with \(\mu = 2 \) and \(\text{mult}_0(D) = 2 \).

Intersection complexes associated with local systems of rank 1 on the complement of the cusp

- For \(z \in \mathbb{C}^* \), let \(\mathcal{L}_z \) be the local system on \(U \) of rank 1 given by \(\varrho_z : G \to \text{GL}(1, \mathbb{C}) = \mathbb{C}^* \), \(\varrho_z(\delta) = z, \varrho_z(a) = \varrho_z(b) = 1 \).

- \(t_1 = z^{-1}, \quad t_2 = \begin{pmatrix} 0 & -z^{-1} \\ z^{-1} & z^{-1} \end{pmatrix} \)

- \(\text{CC}(j_!^* \mathcal{L}_z) = T_\mathcal{L}^*(X) + m_1 T_{D_{reg}}^*(X) + m_0 T_0^*(X) \).

- If \(z = 1 \) then \(\mathcal{L}_z = \mathbb{C}U \) and \(j_!^* \mathcal{L}_z = \mathbb{C}X \), \(m_1 = m_0 = 0 \).

- If \(z \neq 1 \) then \(m_1 = 1 \) and

\[
\begin{cases}
\text{if } z^2 - z + 1 = 0 \text{ then } m_0 = 0 \\
\text{if } z^2 - z + 1 \neq 0 \text{ then } m_0 = 1.
\end{cases}
\]

- \(z^2 - z + 1 = 0 \leftrightarrow z = e^{\pm \frac{2\pi i}{3}} \).

Some examples of local systems of rank 2 on the complement of the cusp

- For \(s, t \in \mathbb{C}^* \) let \(\mathcal{L}_{s,t} \) be the local system associated with the representation \(\varrho_{s,t} : G \to \text{GL}(2, \mathbb{C}) : \varrho_{s,t}(a) = \varrho_{s,t}(b) = \begin{pmatrix} \theta & 0 \\ 0 & \theta^2 \end{pmatrix}, \varrho_{s,t}(\delta) = \begin{pmatrix} 0 & s \\ t & 0 \end{pmatrix}, \theta = e^{\frac{2\pi i}{3}} \).
Some examples of integrable logarithmic connections of rank 2

For any constants \(\lambda, e \in \mathbb{C} \) let us consider the integrable logarithmic connection \(\mathcal{E}_{\lambda, e} \) whose underlying \(\mathcal{O}_X \)-module is \(\mathcal{O}_X^\lambda \) and the actions of \(\chi \) and \(\delta \) with respect to the basis \(e_1 = (1,0), e_2 = (0,1) \) are given by:

\[
\chi \begin{pmatrix} e_1 \\ e_2 \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda + 1 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}, \quad \delta \begin{pmatrix} e_1 \\ e_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ ey & 0 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}.
\]

Let us call

\[
A_{\lambda} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda + 1 \end{pmatrix}, \quad B_{e} = \begin{pmatrix} 0 & 1 \\ ey & 0 \end{pmatrix}.
\]

It is clear that \(\mathcal{E}_{\lambda, e} = \mathcal{F}_X e_1 \) and that \(\text{ann}_{\mathcal{F}_X} e_1 = \mathcal{F}_X (\chi - \lambda, \delta^2 - ey) \).

We call \(\mathcal{M}_{\lambda, e} = \mathcal{D}_X \otimes_{\mathcal{F}_X} \mathcal{E}_{\lambda, e} = \mathcal{D}_X / \mathcal{D}_X (\chi - \lambda, \delta^2 - ey) \).

(4.1) PROPOSITION. With the above notations, there are natural isomorphisms of left \(\mathcal{F}_X \)-modules:

1) \(\mathcal{E}_{\lambda, e} \otimes_{\mathcal{D}_X} \mathcal{E}_{\alpha} \simeq \mathcal{E}_{\lambda+\alpha, e}, \alpha, \lambda, e \in \mathbb{C}. \)

2) \(\mathcal{E}_{\lambda, e}^* = \text{Hom}_{\mathcal{D}_X} (\mathcal{E}_{\lambda, e}, \mathcal{O}_X) \simeq \mathcal{E}_{-\lambda-1, e}. \)

PROOF. 2) \((\chi e_1^*)(e_1) = \chi(e_1^*(e_1)) - e_1^*(\chi e_1) = -\lambda, (\chi e_1^*)(e_2) = \chi(e_1^*(e_2)) - e_1^*(\chi e_2) = 0 \). So \(\chi e_1^* = -\lambda e_1^* \). In a similar way we find \(\chi e_2^* = -(\lambda + 1)e_2^* \).

\((\delta e_1^*)(e_1) = 0, (\delta e_1^*)(e_2) = 0 \). So \(\delta e_1^* = e_1^* \). We also find \(\delta e_2^* = e_2^* \).

The \(\mathcal{D}_X \)-linear map \(\mathcal{E}_{-\lambda-1, e} \to (\mathcal{E}_{\lambda, e})^* \) sending \(e_1 \mapsto e_2^*, e_2 \mapsto -e_1^* \) is an isomorphism of \(\mathcal{F}_X \)-modules.

Q.E.D.

We have natural maps \(\mathcal{M}_{\lambda, e} \to \mathcal{M}_{\lambda-6, e} \) induced by the inclusion \(\mathcal{E}_0 \to \mathcal{E}_{-1} \).

(4.2) PROPOSITION. With the above notations, there is a natural isomorphism \(\mathcal{M}_{\lambda, e}^* \simeq \mathcal{M}_{-\lambda-7, e} \), where \(* \) stands for the duality in \(D \)-module theory. Moreover, the following diagram is commutative

\[
\begin{array}{ccc}
(M_{\lambda, e})^* \overset{(\text{nat.})}{\cong} M_{-\lambda-7, e} \\
\downarrow \text{nat.}^* & & \uparrow \text{nat.} \\
(M_{\lambda-6, e})^* \overset{(\text{nat.})}{\cong} M_{-\lambda-1, e}.
\end{array}
\]
Proof. Compute explicitly the dual \((\mathcal{M}_{\lambda,e})^*\).

Let us denote by \(\Phi : \mathcal{F} \rightarrow \mathcal{F}\) the automorphism of \(\mathcal{F}\) such that \(\Phi\) is the identity on \(\mathcal{O}\) and \(\Phi(\varepsilon) = \varepsilon - \frac{\varepsilon(h)}{h}\) for any logarithmic derivation \(\varepsilon\). In particular
\[
\Phi(\delta) = \delta, \quad \Phi(\chi) = \chi - 6.
\]

It is clear that for any logarithmic differential operator \(Q\), one has
\[
(Qe_1) \otimes h^{-1} = \Phi(Q)(e_1 \otimes h^{-1})
\]
in \(E_{\lambda,e}(D) = E_{\lambda,e} \otimes_{\mathcal{O}} \mathcal{O}(D)\), and so
\[
(Qe_1) \otimes h^{-k} = \Phi^k(Q)(e_1 \otimes h^{-k})
\]
in \(E_{\lambda,e}(kD) = E_{\lambda,e} \otimes_{\mathcal{O}} \mathcal{O}(kD)\) for any integer \(k \in \mathbb{Z}\).

We have
\[
\left(\begin{array}{c}
\partial_x \\
\partial_y
\end{array} \right) = \frac{1}{6h} \left(\begin{array}{cc}
2x & -2y \\
-3y^2 & 3x
\end{array} \right) \left(\begin{array}{c}
\chi \\
\delta
\end{array} \right).
\]

The meromorphic connection \(E_{\lambda,e}[\ast D]\) is given, as left \(\mathcal{D}[\ast D]\)-module, by:
\[
\partial_x \left(\begin{array}{c}
e_1 \\
e_2
\end{array} \right) = \frac{1}{6h} \left(2xA_\lambda - 2yB_\varepsilon \right) \left(\begin{array}{c}
e_1 \\
e_2
\end{array} \right) = \left(\begin{array}{cc}
\frac{\lambda x}{2h} & -\frac{y}{2h} \\
-\frac{y}{2h} & \frac{\lambda y}{2h}
\end{array} \right) \left(\begin{array}{c}
e_1 \\
e_2
\end{array} \right),
\]
\[
\partial_y \left(\begin{array}{c}
e_1 \\
e_2
\end{array} \right) = \frac{1}{6h} \left(-3y^2A_\lambda + 3xB_\varepsilon \right) \left(\begin{array}{c}
e_1 \\
e_2
\end{array} \right) = \left(\begin{array}{cc}
\frac{-\lambda y^2}{2h} & \frac{\lambda x}{2h} \\
\frac{\lambda x}{2h} & \frac{-\lambda y}{2h}
\end{array} \right) \left(\begin{array}{c}
e_1 \\
e_2
\end{array} \right).
\]

(4.3) Definition. We consider the left \(\mathcal{F}[s]\)-module \(E_{\lambda,e}[s|h^s]\) where the action of \(\chi\) and \(\delta\) are given by:
\[
\chi \left(\begin{array}{c}
e_1 h^s \\
e_2 h^s
\end{array} \right) = \left(\begin{array}{cc}
\lambda + 6s & 0 \\
0 & \lambda + 6s + 1
\end{array} \right) \left(\begin{array}{c}
e_1 h^s \\
e_2 h^s
\end{array} \right), \quad \delta \left(\begin{array}{c}
e_1 h^s \\
e_2 h^s
\end{array} \right) = \left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right) \left(\begin{array}{c}
e_1 h^s \\
e_2 h^s
\end{array} \right).
\]

It is a sub-\(\mathcal{F}[s]\)-module of the Bernstein module \(E_{\lambda,e}[s,h^{-1}]h^s\).

(4.4) Proposition. The left \(\mathcal{F}[s]\)-module \(E_{\lambda,e}[s|h^s]\) is generated by \(e_1 h^s\) and \(\text{ann}_\mathcal{F}[s](e_1 h^s) = \mathcal{F}[s](\chi - \lambda - 6s, \delta^2 - ey)\).

(4.5) Exercise. Prove the above proposition.

(4.6) Proposition. The annihilator of \(e_1 h^s \in E_{\lambda,e}[s,h^{-1}]h^s\) over \(\mathcal{D}[s]\) is the left ideal generated by \(\chi - \lambda - 6s\) and \(\delta^2 - ey\), or in other words, the canonical map
\[
Q \otimes q \in \mathcal{D}[s] \otimes_{\mathcal{F}[s]} (E_{\lambda,e}[s|h^s]) \mapsto Qq \in \mathcal{D}[s] : (e_1 h^s) \subset E_{\lambda,e}[s,h^{-1}]h^s
\]
is an isomorphism.

(4.7) Exercise. Prove the above proposition.
(4.8) Computation. (Done with Macaulay 2!) Let \(f \in \mathbb{C} \) be such that \(e = f^2 - f \). The polynomial
\[
 b_{\lambda,f}(s) = \left(s + \frac{\lambda + f + 6}{6} \right) \left(s + \frac{\lambda - f + 7}{6} \right) \left(s + \frac{\lambda + 5}{6} \right) \left(s + \frac{\lambda + 8}{6} \right)
\]
belongs to the ideal \(\mathcal{D}(h, \chi - \lambda - 6s, \delta^2 - ey) \). More precisely, there are \(R(s), C(s), D(s) \in \mathbb{C}[x, y, \lambda, f, s][\partial_x, \partial_y] \) such that
\[
 b_{\lambda,f}(s) = R(s)h + C(s)(\chi - \lambda - 6s) + D(s)(\delta^2 - ey),
\]
where \(\lambda, f, s \) are parameters and \(e = f^2 - f \).

(4.9) Remark. Notice the following facts:

1. For \(\lambda, f \in \mathbb{C} \), the polynomial \(b_{\lambda,f}(s) \in \mathbb{C}[s] \) does not depend on \(f \), it only depends on \(\lambda \) and \(e = f^2 - f \). If we define \(\sigma(f) = -f + 1 \), we have \(\sigma(f)^2 - \sigma(f) = f^2 - f = e \), and so \(f \) and \(\sigma(f) \) are the solutions of \(x^2 - x = e \). We have \(b_{\lambda,f}(s) = b_{\lambda,\sigma(f)}(s) \), and so we can define \(b_{\lambda,e}(s) := b_{\lambda,f}(s) \) for \(f \) such that \(e = f^2 - f \).
2. We have \(b_{\lambda,e}(s) = b_{\lambda,e}(-s - 2) \), with \(\lambda^* = -\lambda - 1 \).

(4.10) Question. Can we always, or at least in “many” other examples, to obtain a parametric functional equation of the type \(\square \) for other families of integrable logarithmic connections, eventually by doing a ramification (as \(f \mapsto e = f^2 - f \)?)

(4.11) Question. Under which conditions on the (free) divisor and on the integrable logarithmic connection \(\mathcal{E} \) we have the following equality
\[
 b_{\mathcal{E},p}(s) = \pm b_{\mathcal{E},p}(-s - 2)
\]
where \(b_{\mathcal{E},p}(s) \) denotes the Bernstein-Sato polynomial (at a point \(p \)) of \(\mathcal{E} \) (see \(\square \), lemma 3.4, remark 3.5). This question is obviously related with \(\square \).

(4.12) Proposition. For any \(\lambda, e \in \mathbb{C} \) such that \(b_{\lambda,e}(-i) \neq 0 \) for all integers \(i \geq 1 \), or equivalently, \((\lambda + f + 6)/6, (\lambda - f + 7)/6, (\lambda + 5)/6, (\lambda + 8)/6 \notin \mathbb{N}_+ \) (with \(f^2 - f = e \)) the natural maps
\[
 P \otimes g \in \mathcal{M}_{\lambda,e} = \mathcal{D}_X \otimes_{\mathcal{D}_X} \mathcal{E}_{\lambda,e} \mapsto P(g) \in \mathcal{E}_{\lambda,e}[*D]
\]
and
\[
 \mathcal{M}_{\lambda,e} \to \mathcal{M}_{\lambda-6,e} \to \mathcal{M}_{\lambda-12,e} \to \mathcal{M}_{\lambda-18,e} \to \cdots
\]
are isomorphisms.

Proof. We only treat the behaviour at the origin. The details for the other points are left to the reader. Let us first consider the map \(\mathcal{M}_{\lambda,e} \to \mathcal{E}_{\lambda,e}[*D] \). For the surjectivity, it is enough to consider the case of \(e_1 h^{-k} \) for \(k > 0 \), since for any section \(g \) of \(\mathcal{E}_{\lambda,e} \) there is a logarithmic differential operator \(Q \) such that \(g = Qe_1 \) and so \(gh^{-k} = (Qe_1)h^{-k} = \Phi^k(Q)(e_1 h^{-k}) \).
From (4) we know that \((b_{\lambda,f}(-1) - R(-1)h)(e_1h^{-1}) = 0\) and so
\[
e_1h^{-1} = \left(\frac{R(-1)}{b_{\lambda,f}(-1)} \right) e_1
\]
is in the image of the map \(\mathcal{M}_{\lambda,e} \to \mathcal{E}_{\lambda,e}[*D]\). In a similar way we prove that for any integer \(k > 0\) we have
\[
e_1h^{-k} = \left(\frac{R(-k)R(-k+1)\cdots R(-1)}{b_{\lambda,f}(-k)b_{\lambda,f}(-k+1)\cdots b_{\lambda,f}(-1)} \right) e_1
\]
and so \(e_1h^{-k}\) is also in the image of the map \(\mathcal{M}_{\lambda,e} \to \mathcal{E}_{\lambda,e}[*D]\).

The proof of the injectivity is similar to the proof of proposition (1.9) (Exercise: Prove it!; Hint: see the proof of theorem 3.1 in [1]). Q.E.D.

(4.13) Proposition. For any \(\lambda,f \in \mathbb{C}\), there is a \(k_0 \geq 0\) such that for each \(k \geq k_0\) the natural map
\[
P \otimes g \in \mathcal{M}_{\lambda-6k,e} = \mathcal{D}_X \otimes_{\mathcal{F}_X} \mathcal{E}_{\lambda,e}(kD) \mapsto P(g) \in \mathcal{E}_{\lambda,e}[*D]
\]
\((e = f^2 - f)\) is an isomorphism.

Summary (see [2]): Let \(\mathcal{D}_{\lambda,e}\) the local system of rank 2 on \(U\) of the horizontal sections of \(\mathcal{E}_{\lambda,e}\)

(a) For any \(\lambda,f \in \mathbb{C}\) such that \((\lambda+f)/6, (\lambda-f+1)/6, (\lambda-1)/6, (\lambda+2)/6 \notin \mathbb{N}_+\), the natural map
\[
P \otimes g \in \mathcal{M}_{\lambda-6k,e} = \mathcal{D}_X \otimes_{\mathcal{F}_X} \mathcal{E}_{\lambda,e}(D) \mapsto P(g) \in \mathcal{E}_{\lambda,e}[*D]
\]
is an isomorphism. In particular \(R_j\mathcal{D}_{\lambda,e} \simeq \text{DR}(\mathcal{M}_{\lambda-6,k})\).

(b) For any \(\lambda,f \in \mathbb{C}\) such that \((-\lambda+f-1)/6, (-\lambda-f)/6, (-\lambda-2)/6, (-\lambda+1)/6 \notin \mathbb{N}_+\), the natural map
\[
P \otimes g \in \mathcal{D}_X \otimes_{\mathcal{F}_X} \mathcal{E}_{\lambda-7,e} = \mathcal{M}_{\lambda-7,e} \mapsto P(g) \in \mathcal{E}_{\lambda,e}[*D]
\]
is an isomorphism. In particular \(R_j\mathcal{D}_{\lambda,e}^* \simeq \text{DR}(\mathcal{M}_{\lambda-7,e})\).

(c) With the same hypotheses as in (b), the induced map
\[
((\mathcal{E}_{\lambda,e})^*[\mathcal{D}])^* \mapsto (\mathcal{M}_{\lambda-7,e})^* \simeq \mathcal{M}_{\lambda,e}
\]
is an isomorphism. In particular \(j^*\mathcal{D}_{\lambda,e} \simeq \text{DR}(\mathcal{M}_{\lambda,e})\).

(d) If \(\lambda,f \in \mathbb{C}\) satisfies the hypotheses in (a) and (b), then the regular holonomic \(\mathcal{D}_X\)-module computing the intersection complex \(j_*\mathcal{D}_{\lambda,e}\) is the image of \(\mathcal{M}_{\lambda,e} \to \mathcal{M}_{\lambda-6,e}\).

(4.14) Proposition. There is no nontrivial map of integrable logarithmic connections (ILC for short) \(\mathcal{E}_\alpha \to \mathcal{E}_{\lambda,e}\) if \(e \notin 6\mathbb{N}\).
Proof. We can obviously work at the level of the stalks at the origin. Let \(\varphi : \mathcal{E}_{\alpha} \to \mathcal{E}_{\lambda,e} \) be a map of ILC and let us write \(\varphi(h^\alpha) = (a, b), a, b \in \theta \). Since \(\varphi \) is \(\mathcal{F} \)-linear, the following equalities hold:

\[
6a(a, b) = \varphi(6\alpha h^\alpha) = \varphi(\chi h^\alpha) = \chi \cdot (a, b) = \cdots = ((\chi + \lambda)(a), (\chi + \lambda + 1)(b)),
\]

0 = \(\varphi(\delta h^\alpha) = \delta \cdot (a, b) = \cdots = (\delta(a) + e y b, a + \delta(b)) \).

In particular

\[
\chi(a) = (6\alpha - \lambda)a, \quad \chi(b) = (6\alpha - \lambda - 1)b,
\]

and \(\delta(a) + e y b = 0, \delta(b) = -a \).

Assume that \(\varphi \neq 0 \). Then \(a, b \neq 0 \) and so \(6\alpha - \lambda, 6\alpha - \lambda - 1 \) should be weights in \(W := 2\mathbb{N} + 3\mathbb{N} = \{0, 2, 3, 4, 5, \ldots \} \). Let us call \(w = 6\alpha - \lambda - 1 \geq 2 \)

and \(b \) will be quasi-homogeneous of weight \(w \). We have \(\delta^2(b) = -\delta(a) = e y b \), but this contradicts proposition (4.16). Q.E.D.

(4.15) Proposition. Let \(\mathcal{L}_{\lambda,e} \) the local system of rank 2 on \(U \) of the horizontal sections of \(\mathcal{E}_{\lambda,e} \). Then, \(\mathcal{L}_{\lambda,e} \) is irreducible if \(e \notin 6\mathbb{N} \).

Proof. From [3], theorem 10.3-2, we know that the de Rham functor establishes an equivalence of abelian categories between the category of regular meromorphic connections along \(D \) and the category of local systems on \(U \). The regular meromorphic connection corresponding to \(\mathcal{L}_{\lambda,e} \) is just the localization \(\mathcal{E}_{\lambda,e} \) \(\mathcal{H} \). Assume that the local system is not irreducible. Then, there is a local system of rank 1, necessarily of the type \(\mathcal{L}_{z, z} \), \(z \in \mathbb{C}^* \), and a non-trivial (and so injective) map \(\mathcal{L}_z \to \mathcal{L}_{\lambda,e} \).

Let \(\alpha \in \mathbb{C} \) be such that \(e^{2\pi i \alpha} = z \) and so \(\text{DR}(\mathcal{E}_{\alpha} \mathcal{H}) \approx R_{\mathcal{J}} \mathcal{L}_z \). We deduce the existence of a non-trivial (and so injective) map of meromorphic connections \(\mathcal{E}_{\alpha} \mathcal{H} \to \mathcal{E}_{\lambda,e} \mathcal{H} \), and so the existence of a non-trivial (and so injective) map of integrable logarithmic connections \(\mathcal{E}_{\alpha} \to \mathcal{E}_{\lambda,e}(kD) = \mathcal{E}_{\lambda - 6k,e} \) for some \(k >> 0 \), but this contradicts proposition (4.14). Q.E.D.

(4.16) Proposition. For any weight \(w \in 2\mathbb{N} + 3\mathbb{N} \), let us call \(\mathcal{P}_w \) the vector space of quasi-homogeneous polynomials in \(\mathbb{C}[x, y] \) of weight \(w \) with respect to weights \(w(x) = 3, w(y) = 2 \). For any constant \(e \in \mathbb{C} \) such that \(e \notin 6\mathbb{N} \), the map

\[
\delta^2 - e y : \mathcal{P}_w \to \mathcal{P}_{w+2}
\]

is injective.

Proof. For \(w = 0 \) we have \(\mathcal{P}_w = \langle 1 \rangle \) and the result is clear.

We have \(\delta^2(x) = 12xy, \delta^2(y) = 6y^2, \delta^2(xy) = 30xy^2 \) and if \(n \geq 2 \) then

\[
\delta^2(y^n) = 4n(n - 1)y^{n-2}h + 2n(2n + 1)y^{n+1},
\]

\[
\delta^2(xy^n) = 4n(n - 1)xy^{n-2}h + (2n + 3)(2n + 4)xy^{n+1}.
\]

For \(2 \leq w \leq 6 \) we have \(\mathcal{P}_2 = \langle y \rangle, \mathcal{P}_3 = \langle x \rangle, \mathcal{P}_4 = \langle y^2 \rangle, \mathcal{P}_5 = \langle xy \rangle, \mathcal{P}_6 = \langle x^2, y^3 \rangle = \langle h, y^3 \rangle \). Since:

\[
(\delta^2 - e y)(y) = (6 - e)y^2, \delta^2 - e y : \mathcal{P}_2 \to \mathcal{P}_4 \text{ is injective if } e \neq 6.
\]

\[
(\delta^2 - e y)(x) = (12 - e)xy, \delta^2 - e y : \mathcal{P}_3 \to \mathcal{P}_5 \text{ is injective if } e \neq 12.
\]
\[(\delta^2 - cy)(y^2) = 8h + (20 - e)y^3, \delta^2 - ey : \mathcal{P}_4 \to \mathcal{P}_0 \text{ is injective } \forall e \in \mathbb{C}.
\]

\[(\delta^2 - cy)(xy) = (30 - e)xy^2, \delta^2 - ey : \mathcal{P}_5 \to \mathcal{P}_7 \text{ is injective if } e \neq 30.
\]

\[(\delta^2 - ey)(\gamma_1 h + \gamma_0 y^3) = (24\gamma_0 - e\gamma_1)yh + (42 - e)\gamma_0 y^4, \delta^2 - ey : \mathcal{P}_6 \to \mathcal{P}_8 \text{ is injective if } e \neq 42, 0.
\]

Take \(w \geq 7\) and write \(w = 6k + w'\) with \(0 \leq w' < 6\). For any \(a \in \mathcal{P}_w\) we can divide by \(h\) and obtain \(a = q_ah + r_a\), where \(q_a \in \mathcal{P}_{w-6}\), \(r_a \in \mathcal{P}_w\) and \(r_a\) has the form \(r_a = r_a'(y)x + r_a''(y)\), with \(r_a'(y)\) quasi-homogeneous of weight \(w - 3\) and \(r_a''(y)\) quasi-homogeneous of weight \(w\).

Case \(w' = 0, w = 6k\): Since \(w - 3\) is odd, we deduce that \(r_a'(y) = 0\) and so \(r_a = r_a''(y) = 2\). We want to prove that if \(a \in \mathcal{P}_{6k} - \{0\}\) and \(e \notin 6\mathbb{N}\), then \((\delta^2 - ey)(a) \neq 0\). We proceed by induction on \(k\). For \(k = 1\) the result has already been proved. Assume that \((\delta^2 - ey)(a') \neq 0\) whenever \(a' \in \mathcal{P}_{6(k-1)} - \{0\}\) and take \(a \in \mathcal{P}_{6k}, a \neq 0\). We have

\[
(\delta^2 - ey)(a) = (\delta^2 - ey)(q_a) + (\delta^2 - ey)(r_a) = (\delta^2 - ey)(q_a) = (\delta^2 - ey)(q_a) \neq 0 \text{ by the induction hypothesis.}
\]

Case \(w' = 2, w = 6k + 2\): Since \(w - 3\) is odd, we deduce that \(r_a'(y) = 0\) and so \(r_a = r_a''(y) = 6\gamma y^k, \gamma \in \mathbb{C}\). We want to prove that if \(a \in \mathcal{P}_{6k+2} - \{0\}\) and \(e \notin 6\mathbb{N}\), then \((\delta^2 - ey)(a) \neq 0\). We proceed by induction on \(k\). For \(k = 0\) the result has already been proved. Assume that \((\delta^2 - ey)(a') \neq 0\) whenever \(a' \in \mathcal{P}_{6(k-1)+2} - \{0\}\) and take \(a \in \mathcal{P}_{6k+2}, a \neq 0\). By using the formulae [5] we find that

\[
(\delta^2 - ey)(a) \equiv \gamma((6k + 2)(6k + 3) - e)y^{3k+2} \pmod{h},
\]

and so \((\delta^2 - ey)(a) \neq 0 \text{ if } \gamma \neq 0\). If \(\gamma = 0\) then \(q_a \neq 0\) and \((\delta^2 - ey)(a) = (\delta^2 - ey)(q_a) \neq 0 \text{ by the induction hypothesis.}
\]

Case \(w' = 3, w = 6k + 3\): Since \(w\) is odd, we deduce that \(r_a''(y) = 0\) and so \(r_a = r_a'(y) = 18\gamma y^{k+1}, \gamma \in \mathbb{C}\). We want to prove that if \(a \in \mathcal{P}_{6k+3} - \{0\}\) and \(e \notin 6\mathbb{N}\), then \((\delta^2 - ey)(a) \neq 0\). We proceed by induction on \(k\). For \(k = 0\) the result has already been proved. Assume that \((\delta^2 - ey)(a') \neq 0\) whenever \(a' \in \mathcal{P}_{6(k-1)+3} - \{0\}\) and take \(a \in \mathcal{P}_{6k+3}, a \neq 0\). By using the formulae [5] we find that

\[
(\delta^2 - ey)(a) \equiv \gamma((6k + 3)(6k + 4) - e)y^{3k+1} x \pmod{h},
\]

and so \((\delta^2 - ey)(a) \neq 0 \text{ if } \gamma \neq 0\). If \(\gamma = 0\) then \(q_a \neq 0\) and \((\delta^2 - ey)(a) = (\delta^2 - ey)(q_a) \neq 0 \text{ by the induction hypothesis.}
\]

Case \(w' = 5, w = 6k + 5\): Since \(w\) is odd, we deduce that \(r_a''(y) = 0\) and so \(r_a = r_a'(y) = 24\gamma y^{k+2}, \gamma \in \mathbb{C}\). We want to prove that if \(a \in \mathcal{P}_{6k+5} - \{0\}\) and \(e \notin 6\mathbb{N}\), then \((\delta^2 - ey)(a) \neq 0\). We proceed by induction on \(k\). For \(k = 0\) the result has already been proved. Assume that \((\delta^2 - ey)(a') \neq 0\) whenever \(a' \in \mathcal{P}_{6(k-1)+5} - \{0\}\) and take \(a \in \mathcal{P}_{6k+5}, a \neq 0\). By using the formulae [5] we find that

\[
(\delta^2 - ey)(a) \equiv \gamma((6k + 5)(6k + 6) - e)y^{3k+2} x \pmod{h},
\]
and so \((\delta^2 - ey)(a) \neq 0\) if \(\gamma \neq 0\). If \(\gamma = 0\) then \(q_0 \neq 0\) and \((\delta^2 - ey)(a) = b(\delta^2 - ey)(q_0) \neq 0\) by the induction hypothesis.

The remaining cases \(w' = 1\) and \(w' = 4\) will be treated otherwise. For any weight \(w\) and any \(a \in P_w\), \(a \neq 0\), there are unique \(d \geq 0\) and unique polynomials \(a_0, \ldots, a_d\) such that

\[
a = a_d h^d + a_{d-1} h^{d-1} + \cdots + a_0, \quad a_d \neq 0, \quad a_i = a_i'(y) x + a_i''(y).
\]

Moreover, \(a_i\) is quasi-homogeneous of weight \(w - 6i\), \(a_i'(y)\) is quasi-homogeneous of weight \(w - 6i - 3\) and \(a_i''(y)\) is quasi-homogeneous of weight \(w - 6i\).

Case \(w' = 1, w = 6k + 1\) \((k \geq 1)\): Let \(a \in P_w\) be a non-zero element and consider the unique expression

\[
a = a_d h^d + a_{d-1} h^{d-1} + \cdots + a_0\text{ as before. Since } w - 6i \text{ is odd, we deduce that } a_i''(y) = 0 \text{ and so } a_i = a_i'(y) x = \gamma_i y^{3(k-i)-1} x, \quad \gamma_i \in \mathbb{C}. \text{ Note that in this case } d < k. \text{ Let us call } b = (\delta^2 - ey)(a) \in P_{w+2}. \text{ By using the formulae } [5] \text{ we find that the unique expression } [6] \text{ for } b \text{ is given by}
\]

\[
b = (\delta^2 - ey) \left(\sum_{i=0}^{d} \gamma_i y^{3(k-i)-1} x^i \right) = \sum_{i=0}^{d} \gamma_i h^i (\delta^2 - ey)(y^{3(k-i)-1} x^i) = \sum_{i=0}^{d} \gamma_i h^i \left[4(3(k-i) - 1)(3(k-i) - 2) y^{3(k-i)-3} x + \left((6(k-i) + 1)(6(k-i) + 2) - e \right) y^{3(k-i)} x \right] = \left[\gamma_d 4(3(k-d) - 1)(3(k-d) - 2) y^{3(k-d)-3} x \right] h^{d+1} + b_d h^d + \cdots + b_0.
\]

Since \(\gamma_d \neq 0\) \((a_d \neq 0)\), we obtain that \(b_{d+1} \neq 0\) and so \(b \neq 0\).

We conclude that \((\delta^2 - ey) : P_{6k+1} \to P_{6k+3}\) is injective for all \(k \geq 1\) and all \(e \in \mathbb{C}\).

Case \(w' = 4, w = 6k + 4\) \((k \geq 0)\): Let \(a \in P_w\) be a non-zero element and consider the unique expression \([6] a = a_d h^d + a_{d-1} h^{d-1} + \cdots + a_0\). Since \(w - 6i\) is even, we deduce that \(a_i''(y) = 0\) and so \(a_i = a_i'(y) = \gamma_i y^{3(k-i)+2}\), \(\gamma_i \in \mathbb{C}\).

Let us call \(b = (\delta^2 - ey)(a) \in P_{w+2}\). By using the formulae \([5]\) we find that the unique expression \([6]\) for \(b\) is given by

\[
b = (\delta^2 - ey) \left(\sum_{i=0}^{d} \gamma_i y^{3(k-i)+2} x^i \right) = \sum_{i=0}^{d} \gamma_i h^i (\delta^2 - ey)(y^{3(k-i)+2}) = \sum_{i=0}^{d} \gamma_i h^i \left[4(3(k-i) + 2)(3(k-i) + 1) y^{3(k-i)+1} h + (6(k-i) + 4)(6(k-i) + 5)y^{3(k-i)+3} \right] = \left[\gamma_d 4(3(k-d) + 2)(3(k-d) + 1) y^{3(k-d)+1} \right] h^{d+1} + b_d h^d + \cdots + b_0.
\]

Since \(\gamma_d \neq 0\) \((a_d \neq 0)\), we obtain that \(b_{d+1} \neq 0\) and so \(b \neq 0\).

We conclude that \((\delta^2 - ey) : P_{6k+4} \to P_{6k+6}\) is injective for all \(k \geq 0\) and all \(e \in \mathbb{C}\). Q.E.D.

(4.17) Theorem. For \(\lambda = -2, f = 2 = (e = 2)\), we have
1. The local system $\mathcal{L}_{-2,2}$ is irreducible.

2. The image of $\mathcal{M}_{-2,2} \to \mathcal{M}_{-8,2}$ is presented as

 \[\mathcal{N} = \mathcal{D}_X / \mathcal{D}_X (\chi + 2, 9y\partial_x^2 - 4\partial_y^2), \]

 and $\text{DR}(\mathcal{N}) \simeq j_* \mathcal{L}_{-2,2}$.

3. The regular holonomic \mathcal{D}_X-module \mathcal{N} is simple and its characteristic variety is $T^*_X(X) \cup T^*_{D_{reg}}(X)$.

References

